نتایج جستجو برای: ideals of borel type
تعداد نتایج: 21258190 فیلتر نتایج به سال:
It is shown that a squarefree principal Borel ideal satisfies the persistence property for the associated prime ideals. For the graded maximal ideal we compute the index of stability with respect to squarefree principal Borel ideals and determine their stable set of associated prime ideals.
We present several naturally defined σ–ideals which have Borel bases but, unlike for the classical examples, these bases are not of bounded Borel complexity. We investigate set-theoretic properties of such σ–ideals.
In this PhD thesis we propose an algorithmic approach to the study of the Hilbert scheme. Developing algorithmic methods, we also obtain general results about Hilbert schemes. In Chapter 1 we discuss the equations defining the Hilbert scheme as subscheme of a suitable Grassmannian and in Chapter 5 we determine a new set of equations of degree lower than the degree of equations known so far. In ...
We examine the question of how many Boolean algebras, distinct up to isomorphism, that are quotients of the powerset of the naturals by Borel ideals, can be proved to exist in ZFC alone. The maximum possible value is easily seen to be the cardinality of the continuum 2א0 ; earlier work by Ilijas Farah had shown that this was the value in models of Martin’s Maximum or some similar forcing axiom,...
We use the notion of Borel generators to give alternative methods for computing standard invariants, such as associated primes, Hilbert series, and Betti numbers, of Borel ideals. Because there are generally few Borel generators relative to ordinary generators, this enables one to do manual computations much more easily. Moreover, this perspective allows us to find new connections to combinator...
Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...
A well-known Peterson’s theorem says that the number of abelian ideals in a Borel subalgebra of a rank-r finite dimensional simple Lie algebra is exactly 2r . In this paper, we determine the dimensional distribution of abelian ideals in a Borel subalgebra of finite dimensional simple Lie algebras, which is a refinement of the Peterson’s theorem capturing more Lie algebra invariants.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید