نتایج جستجو برای: hyers ulam rassias
تعداد نتایج: 2129 فیلتر نتایج به سال:
The stability problem of functional equations started with the question concerning stability of group homomorphisms proposed by Ulam 1 during a talk before a Mathematical Colloquium at the University of Wisconsin, Madison. In 1941, Hyers 2 gave a partial solution of Ulam’s problem for the case of approximate additive mappings in the context of Banach spaces. In 1978, Rassias 3 generalized the t...
This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem is used for obtaining existence and uniqueness of solutions. By means of abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish Hyers-Ulam stabi...
Abstract In this paper, we introduce a new integral transform, namely Aboodh and apply the transform to investigate Hyers–Ulam stability, Hyers–Ulam–Rassias Mittag-Leffler–Hyers–Ulam Mittag-Leffler–Hyers–Ulam–Rassias stability of second order linear differential equations.
In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear mappings. In 1951 D.G. Bourgin was the second author to treat the Ulam problem for additive mappings. In 1982–2005 we established the Hyers–Ulam stability for the Ulam problem of linear and nonlinear mappings. In 1998 S.-M. Jung and in 2002–2005 the authors of this paper investigated the Hyers–Ulam stability of additive ...
In this paper, we obtain the Hyers–Ulam–Rassias stability of the generalized Pexider functional equation ∑ k∈K f(x+ k · y) = |K|g(x) + |K|h(y), x, y ∈ G, where G is an abelian group, K is a finite abelian subgroup of the group of automorphism of G. The concept of Hyers–Ulam–Rassias stability originated from Th.M. Rassias’ Stability Theorem that appeared in his paper: On the stability of the lin...
In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.
A Hyers-Ulam-Rassias stability result for functional equations in Intuitionistic Fuzzy Banach spaces
Hyers-Ulam-Rassias stability have been studied in the contexts of several areas of mathematics. The concept of fuzziness and its extensions have been introduced to almost all branches of mathematics in recent times.Here we define the cubic functional equation in 2-variables and establish that Hyers-Ulam-Rassias stability holds for such equations in intuitionistic fuzzy Banach spaces.
By using a fixed point method, we establish the Hyers–Ulam stability and the Hyers–Ulam–Rassias stability for a general class of nonlinear Volterra integral equations in Banach spaces. 2000 Mathematics Subject Classification: Primary 45N05, 47J05, 47N20, 47J99, Secondary 47H99, 45D05, 47H10.
In 1940 (and 1964) S. M. Ulam proposed the well-known Ulam stability problem. In 1941 D. H. Hyers solved the Hyers-Ulam problem for linear mappings. In 1992 and 2008, J. M. Rassias introduced the Euler-Lagrange quadratic mappings and the JMRassias “product-sum” stability, respectively. In this paper we introduce an Euler-Lagrange type quadratic functional equation and investigate the JMRassias ...
Abstract In this paper, a class of nonlinear ? -Hilfer fractional integrodifferential coupled systems on bounded domain is investigated. The existence and uniqueness results for the are proved based contraction mapping principle. Moreover, Ulam–Hyers–Rassias, Ulam–Hyers, semi-Ulam–Hyers–Rassias stabilities to initial value problem obtained.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید