نتایج جستجو برای: hammerstein fredholm and volterra integral equations

تعداد نتایج: 16903358  

In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative   examples are provided to demonstrate the applicability and simplicity of our   scheme.    

Journal: :sahand communications in mathematical analysis 2015
parviz darania jafar ahmadi shali

in this paper, we studied the numerical solution of nonlinear weakly singular volterra-fredholm integral equations by using the product integration method. also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear volterra-fredholm integral equations. the reliability and efficiency of the proposed scheme are...

Journal: :journal of sciences islamic republic of iran 0

here a posteriori error estimate for the numerical solution of nonlinear voltena- hammerstein equations is given. we present an error upper bound for nonlinear voltena-hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of brunner for these problems (the implicitly linear collocation method).we al...

احمد شهسواران, اکبر شهسواران

In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...

In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...

احمد شهسواران, اکبر شهسواران

In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...

2007
Lechosław Hącia Karol Bednarek Andrzej Tomczewski

In this paper the method of integral equations is proposed for some problems of electrical engineering ( current density, radiative heat transfer, heat conduction). Presented models lead to a system of Fredholm integral equations, integro-differential equations or Volterra-Fredholm integral equations, respectively. We propose various numerical methods (discretization method and projection metho...

Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...

A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...

2005
B. SEPEHRIAN M. RAZZAGHI

Several numerical methods for approximating the solution of Hammerstein integral equations are known. For Fredholm-Hammerstein integral equations, the classical method of successive approximations was introduced in [16]. A variation of the Nystrom method was presented in [11]. A collocation-type method was developed in [9]. In [3], Brunner applied a collocation-type method to nonlinear Volterra...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید