نتایج جستجو برای: goldie dimension
تعداد نتایج: 111957 فیلتر نتایج به سال:
Let R be a ring, σ an injective endomorphism of R and δ a σderivation of R. We prove that if R is semiprime left Goldie then the same holds for the Ore extension R[x;σ, δ] and both rings have the same left uniform dimension.
Lattices with a unique essential element are investigated. It is shown that, a compactly generated lattice with a unique essential element different from the top element, and with finite Goldie dimension has finite length. Mathematics Subject Classification: Primary 06C15, secondary 16P20
Relative to a hereditary torsion theory $tau$ we introduce a dimension for a module $M$, called {em $tau$-rank of} $M$, which coincides with the reduced rank of $M$ whenever $tau$ is the Goldie torsion theory. It is shown that the $tau$-rank of $M$ is measured by the length of certain decompositions of the $tau$-injective hull of $M$. Moreover, some relations between the $tau$-rank of $M$ and c...
It is well-known that a ring R is semiperfect if and only if RR (or RR) is a supplemented module. Considering weak supplements instead of supplements we show that weakly supplemented modules M are semilocal (i.e., M/Rad(M) is semisimple) and that R is a semilocal ring if and only if RR (or RR) is weakly supplemented. In this context the notion of finite hollow dimension (or finite dual Goldie d...
One of the generalizations supplemented modules is Goldie*-supplemented module, defined by Birkenmeier et al. using $\beta^{\ast}$ relation. In this work, we deal with concept cofinitely as a version module. A left $R$-module $M$ called module if there supplement submodule $S$ $C\beta^{\ast}S$, for each cofinite $C$ $M$. Evidently, are Goldie*-supplemented. Further, Goldie*-supplemented, then $...
We find a bound for the Goldie dimension of hereditary modules in terms of the cardinality of the generator sets of its quasi-injective hull. Several consequences are deduced. In particular, it is shown that every right hereditary module with countably generated quasi-injective hull is noetherian. Or that every right hereditary ring with finitely generated injective hull is artinian, thus answe...
It is proved that localizations of injective R-modules of finite Goldie dimension are injective if R is an arithmetical ring satisfying the following condition: for every maximal ideal P , RP is either coherent or not semicoherent. If, in addition, each finitely generated R-module has finite Goldie dimension, then localizations of finitely injective R-modules are finitely injective too. Moreove...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید