نتایج جستجو برای: godunov scheme
تعداد نتایج: 222776 فیلتر نتایج به سال:
Godunov type schemes form a special class of transport projection methods for the approximate solution of nonlinear hyperbolic conservation laws. We study the convergence rate of such schemes in the context of scalar conservation laws. We show how the question of consistency for Godunov type schemes can be answered solely in terms of the behavior of the associated projection operator. Namely, w...
This paper presents an approach, which combines the conventional finite volume method (FVM) with the lattice Boltzmann Method (LBM), to simulate compressible flows. Similar to the Godunov scheme, in the present approach, LBM is used to evaluate the flux at the interface for local Riemann problem when solving Euler/Navier-Stokes (N-S) equations by FVM. Two kinds of popular compressible Lattice B...
four explicit finite difference schemes, including lax-friedrichs, nessyahu-tadmor, lax-wendroff and lax-wendroff with a nonlinear filter are applied to solve water hammer equations. the schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. the computational results are compared with those of the method of characteristics (moc), a...
Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...
of the time dependent P n equations by a Godunov type scheme having the diffusion limit. Part 1 : The case of the time dependent P 1 equations.
1 Department of Mathematics, Institute for Physical Science & Technology and Center for Scientific Computation And Mathematical Modeling (CSCAMM), University of Maryland College Park, MD 20742-3289 [email protected] 2 Department of Mathematics University of California Davis, CA 95616 [email protected] “Hyperbolic Problems: Theory, Numerics, Applications”, Proceedings of the 9th Inter...
Nonoscillatory central schemes are a class of Godunov-type (i.e., shock-capturing, finite volume) numerical methods for solving hyperbolic systems of conservation laws (e.g., the Euler equations of gas dynamics). Throughout the last decade, central (Godunov-type) schemes have gained popularity due to their simplicity and efficiency. In particular, the latter do not require the solution of a Rie...
A hybrid implicit-explicit scheme is developed for Eulerian hydrodynamics. The hybridi~atlon is a continuous switch and operates on each characteristic field separately. The explicit scheme is a version of the second-order Godunov scheme; the implicit method is only firstorder accurate in time but leads to Ii block tridiagonal matrix inversion for efficiency and is unconditionally stable for th...
Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید