For any graph G = (V, E), D V is a global dominating set if D dominates both G and its complement G . The global domination number g(G) of a graph G is the fewest number of vertices required of a global dominating set. In general, max{(G), (G )} ≤ g(G) ≤ (G)+(G ), where (G) and (G ) are the respective domination numbers of G and G . We show, when G is a planar graph, that g(G) ≤ max{...