نتایج جستجو برای: generically gorenstein

تعداد نتایج: 6063  

2011
EDGAR E. ENOCHS ZHAOYONG HUANG

The principle “Every result in classical homological algebra should have a counterpart in Gorenstein homological algebra” was given by Henrik Holm. There is a remarkable body of evidence supporting this claim. Perhaps one of the most glaring exceptions is provided by the fact that tensor products of Gorenstein projective modules need not be Gorenstein projective, even over Gorenstein rings. So ...

2008
PU ZHANG

Since Eilenberg and Moore [EM], the relative homological algebra, especially the Gorenstein homological algebra ([EJ2]), has been developed to an advanced level. The analogues for the basic notion, such as projective, injective, flat, and free modules, are respectively the Gorenstein projective, the Gorenstein injective, the Gorenstein flat, and the strongly Gorenstein projective modules. One c...

Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...

2009
Guoqiang Zhao Zhaoyong Huang

In this paper, we study the relation between m-strongly Gorenstein projective (resp. injective) modules and n-strongly Gorenstein projective (resp. injective) modules whenever m 6= n, and the homological behavior of n-strongly Gorenstein projective (resp. injective) modules. We introduce the notion of n-strongly Gorenstein flat modules. Then we study the homological behavior of n-strongly Goren...

2007
BORIS FEIGIN

The universal enveloping algebra of any simple Lie algebra g contains a family of commutative subalgebras, called the quantum shift of argument subalgebras [R, FFT]. We prove that generically their action on finitedimensional modules is diagonalizable and their joint spectra are in bijection with the set of monodromy-free G -opers on P with regular singularity at one point and irregular singula...

2004
PETER JØRGENSEN

Gorenstein rings are important to mathematical areas as diverse as algebraic geometry, where they encode information about singularities of spaces, and homotopy theory, through the concept of model categories. In consequence, the study of Gorenstein rings has led to the advent of a whole branch of homological algebra, known as Gorenstein homological algebra. This paper solves one of the open pr...

2013
A. XU X. YAN Siamak Yassemi

Let R be a right GF -closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorenstein flat dimension of R/I as a right R-module and the Gorenstein injective dimension of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorenstein ring R, the G...

Journal: :bulletin of the iranian mathematical society 2013
h. cheng x. zhu

let $mathcal {a}$ be an abelian category with enough projective objects and $mathcal {x}$ be a full subcategory of $mathcal {a}$. we define gorenstein projective objects with respect to $mathcal {x}$ and $mathcal{y}_{mathcal{x}}$, respectively, where $mathcal{y}_{mathcal{x}}$=${ yin ch(mathcal {a})| y$ is acyclic and $z_{n}yinmathcal{x}}$. we point out that under certain hypotheses, these two g...

Journal: :bulletin of the iranian mathematical society 2013
a. xu x. yan

let r be a right gf-closed ring with finite left and right gorenstein global dimension. we prove that if i is an ideal of r such that r/i is a semi-simple ring, then the gorensntein flat dimensnion of r/i as a right r-module and the gorensntein injective dimensnnion of r/i as a left r-module are identical. in particular, we show that for a simple module s over a commutative gorensntein ring r, ...

2005
Hiroki Abe Mitsuo Hoshino

In this note, we introduce the notion of Gorenstein algebras. Let R be a commutative Gorenstein ring and A a noetherian R-algebra. We call A a Gorenstein R-algebra if A has Gorenstein dimension zero as an R-module (see [2]), add(D(AA)) = PA, where D = HomR(−, R), and Ap is projective as an Rpmodule for all p ∈ Spec R with dim Rp < dim R. Note that if dim R = ∞ then a Gorenstein R-algebra A is p...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید