نتایج جستجو برای: g riesz basis
تعداد نتایج: 807498 فیلتر نتایج به سال:
In this paper we show that every g-frame for a Hilbert space H can be represented as a linear combination of two g-orthonormal bases if and only if it is a g-Riesz basis. We also show that every g-frame can be written as a sum of two tight g-frames with g-frame bounds one or a sum of a g-orthonormal basis and a g-Riesz basis for H . We further give necessary and sufficient conditions on g-Besse...
G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.
for all f ∈ H . The constant A (respectively, B) is a lower (resp. upper) frame bound for the frame. One of the most important frames for applications, especially signal processing, are the Weyl-Heisenberg frames. For g ∈ L(R) we define the translation parameter a > 0 and the modulation parameter b > 0 by: Embg(t) = e , Tnag(t) = g(t− na). For g ∈ L(R) and a, b > 0, we say for short that (g, a,...
in this paper we investigate a new notion of bases in hilbert spaces and similarto fusion frame theory we introduce fusion bases theory in hilbert spaces. we also introducea new denition of fusion dual sequence associated with a fusion basis and show that theoperators of a fusion dual sequence are continuous projections. next we dene the fusionbiorthogonal sequence, bessel fusion basis, hilbe...
این پایان نامه برگرفته از مقاله زیر است g-frames and g-riesz bases, j. math. anal. appl. 322 (2006) 437-452."
Let G be a countably infinite group of unitary operators on a complex separable Hilbert space H. Let X = {x1, ..., xr} and Y = {y1, ..., ys} be finite subsets of H, r < s, V0 = spanG(X), V1 = spanG(Y ) and V0 ⊂ V1. We prove the following result: Let W0 be a closed linear subspace of V1 such that V0 ⊕ W0 = V1 (i.e., V0 + W0 = V1 and V0 ∩ W0 = {0}). Suppose that G(X) and G(Y ) are Riesz bases for...
For Gabor sets, (g; a, b), it is known that (g; a, b) is a frame if and only if (g; 1/b, 1/a) is a Riesz basis for its span. In particular, for every g there is a0 such that for every a < a0, there is a bm = bm(a) > 0 so that for every b < bm, (g; a, b) is a frame, and (g; 1/b, 1/a) is a Riesz basis sequence. In this talk we shall consider a similar problem for wavelet sets (Ψ; a, b). The main ...
this paper is an investigation of $l$-dual frames with respect to a function-valued inner product, the so called $l$-bracket product on $l^{2}(g)$, where g is a locally compact abelian group with a uniform lattice $l$. we show that several well known theorems for dual frames and dual riesz bases in a hilbert space remain valid for $l$-dual frames and $l$-dual riesz bases in $l^{2}(g)$.
g-frames in hilbert spaces are a redundant set of operators which yield a repre-sentation for each vector in the space. in this paper we investigate the connection betweeng-frames, g-orthonormal bases and g-riesz bases. we show that a family of bounded opera-tors is a g-bessel sequences if and only if the gram matrix associated to its denes a boundedoperator.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید