نتایج جستجو برای: fuzzy simpsons rule
تعداد نتایج: 238591 فیلتر نتایج به سال:
designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing fuzzy learning classifier (flc) systems. conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. in thispaper new entities namely precision and recall from the field of information retrieval (ir)systems is adapted as alternative...
Neuro-fuzzy systems have recently gained a lot of interest in research and application. These are approaches that learn fuzzy systems from data. Many of them use rule weights for this task. In this paper we discuss the innuence of rule weights on the interpretability of fuzzy systems. We show how rule weights can be equivalently replaced by modiications in the membership functions of a fuzzy sy...
In the approximate fuzzy reasoning the covering over of fuzzy rule base input and rule premise of a rule determines the importance of that fuzzy rule and the rule output as well. An axiom system has been created, describing the relationship between the fuzzy rule base system, rule input and rule output. By using distance-based operators a novel reasoning method appears by the compositional rule...
In case of fuzzy reasoning in sparse fuzzy rule bases, the question of selecting the suitable fuzzy similarity measure is essential. The rule antecedents of the sparse fuzzy rule bases are not fully covering the input universe therefore fuzzy reasoning methods applied for sparse fuzzy rule bases requires similarity measures able to distinguish the similarity of non-overlapping fuzzy sets, too. ...
Genetic fuzzy rule selection is an effective approach to the design of accurate and interpretable fuzzy rule-based classifiers. It tries to minimize the complexity of fuzzy rule-based classifiers while maximizing their accuracy by selecting only a small number of fuzzy rules from a large number of candidate rules. One important issue in genetic fuzzy rule selection is the prescreening of candid...
In classification problems, we often encounter datasets with different percentage of patterns (i.e. classes with a high pattern percentage and classes with a low pattern percentage). These problems are called “classification Problems with imbalanced data-sets”. Fuzzy rule based classification systems are the most popular fuzzy modeling systems used in pattern classification problems. Rule weights...
predicting different behaviors in computer networks is the subject of many data mining researches. providing a balanced intrusion detection system (ids) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. many of the proposed methods perform well in one of the two aspects, and concentrate on a su...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید