نتایج جستجو برای: fusarium oxysporum fsp tuberose

تعداد نتایج: 15472  

2012
Awad G. Osman Ashraf M. Sherif Adil A. Elhussein Afrah T. Mohamed

This study was carried out to investigate the toxic effects of the fungicide thiram (TMTD) against five nitrogen fixers and the thiram target pest Fusarium oxysporum under laboratory conditions. Nitrogen fixing bacteria Falvobacterium showed the highest values of LD(50) and proved to be the most resistant to the fungicide followed by Fusarium oxysporum, while Pseudomonas aurentiaca was the most...

Journal: :Journal of nematology 1982
B E Mauza J M Webster

Growth of alfalfa (Medicago sativa cv. Vernal) seedlings was compared after inoculation with combinations of either Pratylenchus penetrans and Fusarium soloni or P. penetrans and F. oxysporum f. sp. medicaginis. A synergistic disease interaction occurred in alfalfa when F. oxysporum and P. penetrans were added simultaneously to the soil. Alfalfa growth was suppressed at all inoculum levels of P...

2014
David Nelson Katherine Beattie Graham McCollum Trevor Martin Shekhar Sharma Juluri R. Rao

Fusarium oxysporum is the causal agent for wilt diseases of many major ornamental and horticultural crops. In this study, we plated a local cut flower grower’s soil, with a persistent history of Fusarium wilt of scented stock, Matthiola incana but not the lettuce rotational crop. This yielded culture plates with characteristic pink to carmine red fungi, together with a mixed bacterial populatio...

2013
Daniel Jiménez-Fernández Blanca B. Landa Seogchan Kang Rafael M. Jiménez-Díaz Juan A. Navas-Cortés

BACKGROUND Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. METHODOLOGY We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245...

2007
Hyuk Woo Kwon Ji Hwan Yoon Seong Hwan Kim Seung Beom Hong Youngah Cheon Seung Ju Ko

Thirty seven species of Fusarium were evaluated for their ability of producing extracellular enzymes using chromogenic medium containing substrates such as starch, cellobiose, CM-cellulose, xylan, and pectin. Among the tested species Fusarium mesoamericanum, F. graminearum, F. asiaticum, and F. acuminatum showed high β-glucosidase acitivity. Xylanase activity was strongly detected in F. prolife...

2002
Jian R. Bao Deborah R. Fravel Nichole R. O’Neill George Lazarovits Peter van Berkum

Forty-three Fusarium oxysporum strains and one Fusarium solani strain were analyzed for genetic diversity. These strains represent a wide range of geographic locations and were collected primarily from tomato (Lycopersicon esculentum) roots. Among all 43 F. oxysporum strains, 21 were not pathogenic to tomato, 20 were pathogenic, including 13 strains of Fusarium oxysporum lycopersici and seven s...

Journal: :Zeitschrift fur Naturforschung. C, Journal of biosciences 2010
Hui Xu Qin Wang Wen-Bin Yang

Nine indole derivatives were evaluated in vitro against Fusarium graminearum, Alternaria alternata, Helminthosporium sorokinianum, Pyricularia oryzae, Fusarium oxysporum f. sp. vasinfectum, Fusarium oxysporum f. sp. cucumarinum, and Alternaria brassicae. Most of the compounds were found to possess antifungal activities. Especially compounds 2, 5, 8, and 9 exhibited broad-spectrum antifungal act...

Journal: :Applied and environmental microbiology 2012
Jun Yuan Waseem Raza Qirong Shen Qiwei Huang

Bacillus amyloliquefaciens NJN-6 produces volatile compounds (VOCs) that inhibit the growth and spore germination of Fusarium oxysporum f. sp. cubense. Among the total of 36 volatile compounds detected, 11 compounds completely inhibited fungal growth. The antifungal activity of these compounds suggested that VOCs can play important roles over short and long distances in the suppression of Fusar...

2014
Li-Jun Ma Terrance Shea Sarah Young Qiandong Zeng H. Corby Kistler

Horizontal chromosome transfer introduces host-specific pathogenicity among members of the Fusarium oxysporum species complex and is responsible for some of the most destructive and intractable plant diseases. This paper reports the genome sequence of F. oxysporum f. sp. melonis (NRRL 26406), a causal agent of Fusarium wilt disease on melon.

Journal: :Tropical life sciences research 2013
Latiffah Zakaria Chua Harn Ning

Fungal endophytes are found inside host plants but do not produce any noticeable disease symptoms in their host. In the present study, endophytic Fusarium species were isolated from roots of lawn grass (Axonopus compressus). A total of 51 isolates were recovered from 100 root segments. Two Fusarium species, F. oxysporum (53%) and F. solani (47%), were identified based on macroconidia and conidi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید