نتایج جستجو برای: forecasting prices
تعداد نتایج: 83934 فیلتر نتایج به سال:
In this paper, we showed a method to forecast the daily stock price using neural networks and the result of the Neural Network forecast is compared with the Statistical forecasting result. Stock price prediction is one of the emerging field in neural network forecasting area. This paper also presents the Neural Networks ability to forecast the daily Stock Market Prices. Stock market prediction ...
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
Forecasting prices in electricity markets is critical for consumers and producers in planning their operations and managing their price risk. We utilize the generalized autoregressive conditionally heteroskedastic (GARCH) method to forecast the electricity prices in two regions of New York: New York City and Central New York State. We contrast the one-day forecasts of the GARCH against techniqu...
Forecasting of oil prices has always been a matter of great importance due to its influence in driving a country’s economy. As a matter of fact, the petroleum industry is considered to be the biggest contributor in the industrial sector in terms of providing raw materials to the other industries and generating revenues. Due to the non-linear and unpredictable nature of the oil prices, a lot of ...
Developing models for accurate natural gas spot price forecasting is critical because these forecasts are useful in determining a range of regulatory decisions covering both supply and demand of natural gas or for market participants. A price forecasting modeler needs to use trial and error to build mathematical models (such as ANN) for different input combinations. This is very time consuming ...
modeling and analysis of future prices has been hot topic for economic analysts in recent years. traditionally, the complex movements in the prices are usually taken as random or stochastic process. however, they may be produced by a deterministic nonlinear process. accuracy and efficiency of economic models in the short period forecasting is strategic and crucial for business world. nonlinear ...
The time evolution of aggregate economic variables, such as stock prices, is affected by market expectations of individual investors. Neo-classical economic theory assumes that individuals form expectations rationally, thus enforcing prices to track economic fundamentals and leading to an efficient allocation of resources. However, laboratory experiments with human subjects have shown that indi...
Agricultural commodity futures prices play a significant role in the change tendency of these spot prices and the supply–demand relationship of global agricultural product markets. Due to the nonlinear and nonstationary nature of this kind of time series data, it is inevitable for price forecasting research to take this nature into consideration. Therefore, we aim to enrich the existing researc...
Modeling and analysis of future prices has been hot topic for economic analysts in recent years. Traditionally, the complex movements in the prices are usually taken as random or stochastic process. However, they may be produced by a deterministic nonlinear process. Accuracy and efficiency of economic models in the short period forecasting is strategic and crucial for business world. Nonlinear ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید