نتایج جستجو برای: forecasting performance
تعداد نتایج: 1085145 فیلتر نتایج به سال:
Schon seit mehreren Jahrzehnten wird bei meisten Unternehmen Performance Tuning von Rechnersystemen betrieben. Dieses Thema wurde wie von der Seite der Unternehmen als auch von der Wissenschaft mittlerweile in zahlreichen unterschiedlichen Aspekten erforscht und ausgearbeitet. Es existieren inzwischen viele wissenschaftliche Artikel und Bücher zu dem Thema, wie z.B. von Dennis Shasha und Philip...
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
improving time series forecastingaccuracy is an important yet often difficult task.both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. in this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
artificial neural networks (anns) are flexible computing frameworks and universal approximators that can be applied to a wide range of time series forecasting problems with a high degree of accuracy. however, despite of all advantages cited for artificial neural networks, they have data limitation and need to the large amount of historical data in order to yield accurate results. therefore, the...
This paper presents a new combined forecasting method that is guided by the soft set theory (CFBSS) to predict business failures with different sample sizes. The proposed method combines both qualitative analysis and quantitative analysis to improve forecasting performance. We considered an expert system (ES), logistic regression (LR), and support vector machine (SVM) as forecasting components ...
abstract autoregressive integrated moving average (arima) has been one of the widely used linear models in time series forecasting during the past three decades. recent studies revealed the superiority of artificial neural network (ann) over traditional linear models in forecasting. but neither arima nor anns can be adequate in modeling and forecasting time series since the first model cannot d...
In this paper, we presented the performance of forecasting model and error correction will affect the accuracy of short-term load forecasting. Least squares support vector machines (LS-SVM) based on improved particle swarm optimization is selected as load forecasting model. Forecasting accuracy and generalization performance of LS-SVM depend on selection of its parameters greatly. Adaptive part...
During the recent years extensive researchs have been done on fuzzy time series. Since length of intervals affect the forecasting results in these models, doing research in this area became an interesting topic for time series researchers, there are some studies on this issue but their results are not good enough. In this study, we propose a novel simulated annealing heuristic algorithm is use...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید