نتایج جستجو برای: flapping wings unsteady panel method micro aerial vehicles

تعداد نتایج: 1880834  

Journal: :The Journal of experimental biology 2010
Tatjana Y Hubel Cameron Tropea

Over the last decade, interest in animal flight has grown, in part due to the possible use of flapping propulsion for micro air vehicles. The importance of unsteady lift-enhancing mechanisms in insect flight has been recognized, but unsteady effects were generally thought to be absent for the flapping flight of larger animals. Only recently has the existence of LEVs (leading edge vortices) in s...

2005
M. Bozkurttas H. Dong V. Seshadri R. Mittal

Flapping foils found in nature such as bird and insect wings and fish fins are being studied for potential use in micro aerial vehicles and autonomous underwater vehicles. The fluid dynamics associated with these foils is extremely complicated and much remains to be learnt in this arena. Experimental investigations of flapping foils in nature are limited by their inability to provide full-field...

2016
Bret Stanford Philip Beran

Optimal thickness distributions of aeroelastic flapping shells" (2013). a r t i c l e i n f o a b s t r a c t The severe weight limitations of flapping wing micro air vehicles necessitates the use of thin flexible wings, which in turn requires an aeroelastic modeling tool for proper numerical characterization. Furthermore, due to the unconventional nature of these vehicles, wing design guidelin...

2010
Satish K. Chimakurthi Carlos E. S. Cesnik Bret K. Stanford

Flexible flapping wings have garnered a large amount of attention within the micro aerial vehicle community: a critical component of computationalmicro aerial vehicle simulations is the representation of the structural dynamics behavior of the flapping-wing structure. This paper discusses the development of a new nonlinear finite element solver that is based on a corotational approach and suita...

2015
Andrew K. Dickerson Xing Liu Ting Zhu David L. Hu

The flexibility of insect wings confers aerodynamic benefits, but can also present a hazard if exposed to fog or dew. Fog can cause water to accumulate on wings, bending them into tight taco shapes and rendering them useless for flight. In this combined experimental and theoretical study, we use high-speed video to film the spontaneous folding of isolated mosquito wings due to the evaporation o...

2011
Florian T. Muijres Geoffrey R. Spedding Anders Hedenström

All animals flap their wings in powered flight to provide both lift and thrust, yet few human-engineered designs do so. When combined with flexible wing surfaces, the resulting unsteady fluid flows and interactions in flapping flight can be complex to describe, understand, and model. Here, a simple modified actuator disk is used in a quasi-steady description of the net aerodynamic lift forces o...

2008
R. Ramamurti

Introduction: The flight of insects and birds and the swimming of fish have been sources of continuous fascination throughout the ages. Observation and controlled experimentation have historically been the main sources of information on performance. The mathematical description of the performance of flying creatures has been limited, due to the previously insurmountable difficulties associated ...

2017
Y. H. CHEN

Bionic micro-air vehicles (MAV) having the maneuverability of dragonflies would be capable of fast forward flight, hovering and even backward flight. In order to achieve desirable designs for high performing MAVs, it is essential to understand the aerodynamics and structures of the insect wings and more importantly, the interactions between the operating flows and flexible structural wings. Her...

2013
Lingxiao Zheng Tyson L. Hedrick Rajat Mittal

Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free...

2017
Thomas Lambert Norizham Abdul Razak Grigorios Dimitriadis

Flapping flight is an increasingly popular area of research, with applications to micro-unmanned air vehicles and animal flight biomechanics. Fast, but accurate methods for predicting the aerodynamic loads acting on flapping wings are of interest for designing such aircraft and optimizing thrust production. In this work, the unsteady vortex lattice method is used in conjunction with three load ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید