نتایج جستجو برای: finsler structure
تعداد نتایج: 1569069 فیلتر نتایج به سال:
Finsler and Lagrange spaces can be equivalently represented as almost Kähler manifolds endowed with a metric compatible canonical distinguished connection structure generalizing the Levi Civita connection. The goal of this paper is to perform a natural Fedosov– type deformation quantization of such geometries. All constructions are canonically derived for regular Lagrangians and/or fundamental ...
Given the Finsler structure (M, F) on a manifold M, a Riemannian structure (M, h) and a linear connection on M are defined. They are obtained as the " average " of the Finsler structure and the Chern connection. This linear connection is the Levi-Civita connection of the Riemannian metric h. The relation between parallel transport of the Chern connection and the Levi-Civita connection of h are ...
We formulate a statistical analogy of regular Lagrange mechanics and Finsler geometry derived from Grisha Perelman’s functionals and generalized for nonholonomic Ricci flows. Explicit constructions are elaborated when nonholonomically constrained flows of Riemann metrics result in Finsler like configurations, and inversely, when geometric mechanics is modelled on Riemann spaces with a preferred...
Finsler geometry is a natural and fundamental generalization of Riemann geometry. The Finsler structure depends on both coordinates and velocities. It is defined as a function on tangent bundle of a manifold. We use the Bianchi identities satisfied by Chern curvature to set up a gravitation theory in Berwald-Finsler space. The geometric part of the gravitational field equation is nonsymmetric i...
The metrizability of sprays, particularly symmetric linear connections, is studied in terms of semi-basic 1-forms using the tools developed by Bucataru and Dahl in [2]. We introduce a type of metrizability in relationship with the Finsler and projective metrizability. The Lagrangian corresponding to the Finsler metrizability as well as the Bucataru–Dahl characterization of Finsler and projectiv...
We survey the geometry of Lagrange and Finsler spaces and discuss the issues related to the definition of curvature of nonholonomic manifolds enabled with nonlinear connection structure. It is proved that any commutative Riemannian geometry (in general, any Riemann– Cartan space) defined by a generic off–diagonal metric structure (with an additional affine connection possessing nontrivial torsi...
equality of -curvatures of the berwald and cartan connections leads to a new class of finsler metrics, so-called bc-generalized landsberg metrics. here, we prove that every bc-generalized landsberg metric of scalar flag curvature with dimension greater than two is of constant flag curvature.
A geometric procedure is elaborated for transforming (pseudo) Riemanian metrics and connections into canonical geometric objects (metric and nonlinear and linear connections) for effective Lagrange, or Finsler, geometries which, in their turn, can be equivalently represented as almost Kähler spaces. This allows us to formulate an approach to quantum gravity following standard methods of deforma...
The book “Handbook of Finsler geometry” has been included with a CD containing an elegant Maple package, FINSLER, for calculations in Finsler geometry. Using this package, an example concerning a Finsler generalization of Einstein’s vacuum field equations was treated. In this example, the calculation of the components of the hv-curvature of Cartan connection leads to wrong expressions. On the o...
The equivalence problem for control systems under non-linear feedback is recast as a problem involving the determination of the invariants of submanifolds in the tangent bundle of state space under fiber preserving transformations. This leads to a fiber geometry described by the invariants of submanifolds under the general linear group, which is the classical subject of centro-affine geometry. ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید