نتایج جستجو برای: fibonacci number
تعداد نتایج: 1170752 فیلتر نتایج به سال:
A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...
We formalized some basic properties of the Fibonacci numbers using definitions and lemmas from [7] and [23], e.g. Cassini’s and Catalan’s identities. We also showed the connections between Fibonacci numbers and Pythagorean triples as defined in [31]. The main result of this article is a proof of Carmichael’s Theorem on prime divisors of prime-generated Fibonacci numbers. According to it, if we ...
We dedicate this paper to investigate the most generalized form of Fibonacci Sequence, one of the most studied sections of the mathematical literature. One can notice that, we have discussed even a more general form of the conventional one. Although it seems the topic in the first section has already been covered before, but we present a different proof here. Later I found out that, the auxilia...
A subset S of vertices in a graph G is said to be an independent set of G if each edge in the graph has at most one endpoint in S and a set W ( V is said to be a resolving set of G, if the vertices in G have distinct representations with respect to W. A resolving set W is said to be an independent resolving set, or an ir-set, if it is both resolving and independent. The minimum cardinality of W...
A subset S of vertices in a graph G is said to be an independent set of G if each edge in the graph has at most one endpoint in S and a set W ( V is said to be a resolving set of G, if the vertices in G have distinct representations with respect to W. A resolving set W is said to be an independent resolving set, or an ir-set, if it is both resolving and independent. The minimum cardinality of W...
Here, we investigate the Fibonacci numbers whose sum of aliquot divisors is also a Fibonacci number (the prime Fibonacci numbers have this property).
This citizen science study evaluates the occurrence of Fibonacci structure in the spirals of sunflower (Helianthus annuus) seedheads. This phenomenon has competing biomathematical explanations, and our core premise is that observation of both Fibonacci and non-Fibonacci structure is informative for challenging such models. We collected data on 657 sunflowers. In our most reliable data subset, w...
1. J. C. Butcher. "On a Conjecture Concerning a Set of Sequences Satisfying The Fibonacci Difference Equation/ The Fibonacci Quarterly 16 (1978):8183. 2. M. D. Hendy, "Stolarskys Distribution of Positive Integers." The Fibonacci Quarterly 16 (1978)2 70-80. 3. V. E. HoggattsJr. Fibonacci and Lucas Numbers* Boston: Houghton Mifflin9 1969. Pp. 34-35. 4. K. Stolarsky. "A Set of Generalized Fibonacc...
The Fibonacci Cube is an interconnection network that possesses many desirable properties that are important in network design and application. The Fibonacci Cube can efficiently emulate many hypercube algorithms and uses fewer links than the comparable hypercube, while its size does not increase as fast as the hypercube. However, most Fibonacci Cubes (more than 2/3 of all) are not Hamiltonian....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید