نتایج جستجو برای: ensemble method

تعداد نتایج: 1663422  

Ali Yaghoobi Notash, Anaram Yaghoobi Notash, Peiman Bayat, Shahpar Haghighat,

Background: Breast cancer is the second leading cause of cancer death in women, after lung cancer. Due to the importance of predicting this disease, the use of data mining methods in medical research is more significant than before. Data mining algorithms can be a great help in preventing the development of lymphedema in patients. The aim Of this study was to create a diagnosis system that can ...

2009
Sanjiv Kumar Mehryar Mohri Ameet Talwalkar

A crucial technique for scaling kernel methods to very large data sets reaching or exceeding millions of instances is based on low-rank approximation of kernel matrices. We introduce a new family of algorithms based on mixtures of Nyström approximations, ensemble Nyström algorithms, that yield more accurate low-rank approximations than the standard Nyström method. We give a detailed study of va...

Journal: :journal of ai and data mining 2014
vahid majidnezhad

in this paper, first, an initial feature vector for vocal fold pathology diagnosis is proposed. then, for optimizing the initial feature vector, a genetic algorithm is proposed. some experiments are carried out for evaluating and comparing the classification accuracies which are obtained by the use of the different classifiers (ensemble of decision tree, discriminant analysis and k-nearest neig...

Journal: :journal of advances in computer research 0
mohammad mohammadi department of computer engineering, nourabad mamasani branch, islamic azad university, nourabad mamasani, iran hamid parvin department of computer engineering, nourabad mamasani branch, islamic azad university, nourabad mamasani, iran eshagh faraji department of computer engineering, nourabad mamasani branch, islamic azad university, nourabad mamasani, iran sajad parvin department of computer engineering, nourabad mamasani branch, islamic azad university, nourabad mamasani, iran

the article suggests an algorithm for regular classifier ensemble methodology. the proposed methodology is based on possibilistic aggregation to classify samples. the argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. the optimization aims at learning backgrounds as solid clusters in subspaces of the high-dim...

2004
Niall Rooney David W. Patterson Sarabjot S. Anand Alexey Tsymbal

In this work we present a novel approach to ensemble learning for regression models, by combining the ensemble generation technique of random subspace method with the ensemble integration methods of Stacked Regression and Dynamic Selection. We show that for simple regression methods such as global linear regression and nearest neighbours, this is a more effective method than the popular ensembl...

Journal: :Inf. Sci. 2011
Xudong Ma Ping Luo Fuzhen Zhuang Qing He Zhongzhi Shi Zhiyong Shen

Ensemble learning with output from multiple supervised and unsupervised models aims to improve the classification accuracy of supervised model ensemble by jointly considering the grouping results from unsupervised models. In this paper we cast this ensemble task as an unconstrained probabilistic embedding problem. Specifically, we assume both objects and classes/clusters have latent coordinates...

Journal: :journal of advances in computer research 0
mohsen tavana department of computer engineering, mamasani branch, islamic azad university, mamasani, iran mohammad mohammadi department of computer engineering, mamasani branch, islamic azad university, mamasani, iran hamid parvin department of computer engineering, mamasani branch, islamic azad university, mamasani, iran young researchers and elite club, mamasani branch, islamic azad university, mamasani, iran

exploiting multimodal information like acceleration and heart rate is a promising method to achieve human action recognition. a semi-supervised action recognition approach aucc (action understanding with combinational classifier) using the diversity of base classifiers to create a high-quality ensemble for multimodal human action recognition is proposed in this paper. furthermore, both labeled ...

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

Fereydoun Sabet Ghadam Mohammad Eftekhari Yazdi Vahid Esfahanian

Capability of the Proper Orthogonal Decomposition (POD) method in extraction of the coherent structures from a spatio-temporal chaotic field is assessed in this paper. As the chaotic field, an ensemble of 40 snapshots, obtained from Direct Numerical Simulation (DNS) of the Kuramoto-Sivashinsky (KS) equation, has been used. Contrary to the usual methods, where the ergodicity of the field is need...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید