نتایج جستجو برای: efg1
تعداد نتایج: 152 فیلتر نتایج به سال:
Although gastrointestinal colonization by the opportunistic fungal pathogen Candida albicans is generally benign, severe systemic infections are thought to arise due to escape of commensal C. albicans from the gastrointestinal (GI) tract. The C. albicans transcription factor Efg1p is a major regulator of GI colonization, hyphal morphogenesis, and virulence. The goals of this study were to ident...
Background: The most important virulence factor which plays a central role in Candida albicans pathogenesis is the ability of this yeast to alternate between unicellular yeast and filamentous hyphal forms. Efg1 protein is thought to be the main positive regulating transcription factor, which is responsible for regulating hyphal-specific gene expression under most conditions. ALS3 is one of the ...
Ribosome biogenesis in eukaryotes is a complicated process that involves association and dissociation of numerous assembly factors and snoRNAs. The yeast small ribosomal subunit is first assembled into 90S pre-ribosomes in an ordered and dynamic manner. Efg1 is a protein with no recognizable domain that is associated with early 90S particles. Here, we determine the crystal structure of Efg1 fro...
Chlamydospore formation of the fungal pathogen Candida albicans was found to depend on the Efg1 protein, which regulates the yeast-hyphal transition. Isogenic mutants lacking EFG1 or encoding T206A and T206E variants did not differentiate chlamydospores, while cek1, cph1, or tpk2 mutations had no effect. Furthermore, filamentation of efg1 cph1 double mutants in microaerophilic conditions sugges...
The transcription factor Flo8 is essential for filamentous growth in Saccharomyces cerevisiae and is regulated under the cAMP/protein kinase A (PKA) pathway. To determine whether a similar pathway/regulation exists in Candida albicans, we have cloned C. albicans FLO8 by its ability to complement S. cerevisiae flo8. Deleting FLO8 in C. albicans blocked hyphal development and hypha-specific gene ...
The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
The transcription factor Flo8 is essential for filamentous growth in Saccharomyces cerevisiae and is regulated under the cAMP/protein kinase A (PKA) pathway. To determine whether a similar pathway/regulation exists in Candida albicans, we have cloned C. albicans FLO8 by its ability to complement S. cerevisiae flo8. Deleting FLO8 in C. albicans blocked hyphal development and hypha-specific gene ...
In Candida albicans the transcription factor Efg1, which is differentially expressed in the white phase of the white-opaque transition, is essential for expression of the white phenotype. It is one of six transcription factors included in a proposed interactive transcription network regulating white-opaque switching and maintenance of the alternative phenotypes. Ten sites were identified in the...
Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N...
Investigation the expression Candida albicans EFG1 gene in Vaginal Candidiasis and biofilm formation
Candida albicans has the ability to change between yeast and hyphal cells and is known to be a virulence property. Efg1gene of C.albicans is as a main transcription factor that plays pivotal roles in biofilm formation The aim of the current study is to investigate the presence of Efg1 gene in Candida albicans isolates from women with vaginal candidiasis and its impact on biofilm formation.We us...
Candida albicans and Saccharomyces cerevisiae switch from a yeast to a filamentous form. In Saccharomyces, this switch is controlled by two regulatory proteins, Ste12p and Phd1p. Single-mutant strains, ste12/ste12 or phd1/phd1, are partially defective, whereas the ste12/ste12 phd1/phd1 double mutant is completely defective in filamentous growth and is noninvasive. The equivalent cph1/cph1 efg1/...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید