نتایج جستجو برای: economic statistical design
تعداد نتایج: 1572037 فیلتر نتایج به سال:
Traditionally, the statistical quality control techniques utilize either an attributes or variables product quality measure. Recently, some methods such as three-level control chart have been developed for monitoring multi attribute processes. Control chart usually has three design parameters: the sample size (n), the sampling interval (h) and the control limit coefficient (k).The design parame...
Today, quality improvement and cost reduction are key factors for achieving business success, growth and position. One of the primary tools for quality improvement and cost reduction in online activities of statistical process control is control charts. As the need for monitoring several correlated quality characteristics is extensively growing, the use of multivariate control charts become...
T2 control charts are used to monitor a process when more than one quality variable associated with process is being observed. Recent studies have shown that using variable sample size (VSS) schemes result in charts with more statistical power when detecting small to moderate shifts in the process mean vector. This paper presents an economic- statistical design of T2 control charts with variabl...
The control charts are graphical tools and proven techniques to improve the performance of a process. Usually, the processes are not naturally controlled, so the use of control charts will help to reduce the variability and increase the stability of the process. In the traditional approach, control charts with fix sample size and constant sampling intervals were used to identify the changes in ...
In this research, we propose a bi-objective model for the economic-statistical design of the X-bar and S control charts. The model minimizes out-of-control average time to signal as well as minimizing mean hourly loss-cost where it incorporates the Taguchi loss function. Statistical constraint is considered in the model to achieve desired in-control time to signal. A non-dominated sort...
the hotelling's control chart, is the most widely used multivariate procedure for monitoring two or more related quality characteristics, but it’s power lacks the desired performance in detecting small to moderate shifts. recently, the variable sampling intervals (vsi) control scheme in which the length of successive sampling intervals is determined upon the preceding values has been pro...
CCC-r control chart is a monitoring technique for high yield processes. It is based on the analysis of the number of inspected items until observing a specific number of defective items. One of the assumptions in implementing CCC-r chart that has a significant effect on the design of the control chart is that the inspection is perfect. However, in reality, due to the multiple reasons, the...
This paper proposes a multi-objective model for the economic-statistical design of the variable sample size and sampling interval multivariate exponentially weighted moving average control chart by using double warning lines. The Markov chain approach is used to obtain the statistical properties. We extend the Lorenzen and Vance cost function considering multiple assignable causes and multivari...
Cumulative Count of Conforming (CCC) charts are utilized for monitoring the quality characteristics in high-quality processes. Executive cost of control charts is a motivation for researchers to design them with the lowest cost. Usually in most researches, only one objective named cost function is minimized subject to statistical constraints, which is not effective method for economic-statistic...
Control chart is the most well-known chart to monitor the number of nonconformities per inspection unit where each sample consists of constant size. Generally, the design of a control chart requires determination of sample size, sampling interval, and control limits width. Optimally selecting these parameters depends on several process parameters, which have been considered from statistical and...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید