نتایج جستجو برای: distributional henstock kurzweil integral
تعداد نتایج: 125977 فیلتر نتایج به سال:
Riemann, Lebesgue, Denjoy, Henstock–Kurzweil, McShane, Feynman, Bochner. There are well over 100 named integrals. Why so many? Some are of historical interest and have been superseded by better, newer ones. The Harnack integral is subsumed by the Denjoy. Some are equivalent, as are McShane and Lebesgue in Rn, and Denjoy, Perron, Henstock–Kurzweil in R. Some are designed to work in special space...
In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.
Copyright q 2012 Salvador Sánchez-Perales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We show conditions for the existence, continuity, and differentiability of functions defined by ΓΓs ∞ −∞ ftgt, sdt, where f is a func...
In this paper we prove existence theorems for integro – differential equations x(t) = f(t, x(t), ∫ t 0 k(t, s, x(s))∆s), x(0) = x0 t ∈ Ia = [0, a] ∩ T, a ∈ R+, where T denotes a time scale (nonempty closed subset of real numbers R), Ia is a time scale interval. Functions f, k are Carathéodory functions with values in a Banach space E and the integral is taken in the sense of Henstock-Kurzweil d...
In this article, we use the Hausdorf distance to treat triple Simpson’s rule of Henstock integral a fuzzy valued function as well error bound method. We also introduce δ-fine subdivisions for and numerical example is presented in order show application consequence
Let f be a distribution (generalised function) on the real line. If there is a continuous function F with real limits at infinity such that F ′ = f (distributional derivative) then the distributional integral of f is defined as ∫ ∞ −∞ f = F (∞)−F (−∞). It is shown that this simple definition gives an integral that includes the Lebesgue and Henstock–Kurzweil integrals. The Alexiewicz norm leads ...
We apply the Kurzweil-Henstock integral setting to prove a Fredholm Alternative-type result for the integral equation x (t)− K Z [a,b] α (t, s)x (s) ds = f (t) , t ∈ [a, b] , where x and f are Kurzweil integrable functions (possibly highly oscillating) defined on a compact interval [a, b] of the real line with values on Banach spaces. An application is given.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید