نتایج جستجو برای: discrete time markov chain

تعداد نتایج: 2264072  

Journal: :International Journal of Recent Contributions from Engineering, Science & IT (iJES) 2015

The probable lack of some arcs and nodes in the stochastic networks is considered in this paper, and its effect is shown as the arrival probability from a given source node to a given sink node. A discrete time Markov chain with an absorbing state is established in a directed acyclic network. Then, the probability of transition from the initial state to the absorbing state is computed. It is as...

Bahman Esmaeili Fraydoon Rahnamay Roodposhti Hamid Vaezi Ashtiani

Investors use different approaches to select optimal portfolio. so, Optimal investment choices according to return can be interpreted in different models. The traditional approach to allocate portfolio selection called a mean - variance explains. Another approach is Markov chain. Markov chain is a random process without memory. This means that the conditional probability distribution of the nex...

The arc costs are assumed to be online parameters of the network and decisions should be made while the costs of arcs are not known. The policies determine the permitted nodes and arcs to traverse and they are generally defined according to the departure nodes of the current policy nodes. In on-line created tours arc costs are not available for decision makers. The on-line traversed nodes are f...

2010
Manolis Kellis Amer Fejzic Elham Azizi

In the last lecture we got familiar with the concept of discrete-time Markov chains and Hidden Markov Models (HMMs). A Markov chain is a discrete random process that abides by the Markov property, that the probability of the next state depends only on the current state and not the past. The Markov chain models how a state changes from step to step using transition probabilities. Therefore, a Ma...

Journal: :CoRR 2012
Piotr Gawron Dariusz Kurzyk Zbigniew Puchala

We consider an extension of Discrete Time Markov Chain queueing model to the quantum domain by use of Discrete Time Quantum Markov Chain. We introduce methods for numerical analysis of such models. Using this tools we show that quantum model behaves fundamentally differently from the classical one.

1995
James Ledoux

We consider weak lumpability of denumerable discrete or continuous time Markov chains. Firstly, we are concerned with irreducible recurrent positive and R-positive Markov chains evolving in discrete time. We study the properties of the set of all initial distributions of the starting chain leading to an aggregated homogeneous Markov chain with respect to a partition of the state space. In parti...

Journal: :journal of optimization in industrial engineering 2010
behrouz afshar nadjafi salman kolyaei

the problem we investigate deals with the optimal assignment of resources to the activities of a stochastic project network. we seek to minimize the expected cost of the project include sum of resource utilization costs and lateness costs. we assume that the work content required by the activities follows an exponential distribution. the decision variables of the model are the allocated resourc...

1988
J. R. Rohlicek A. S. Willsky

'Pae multiple time scale decomposition of discrete time, finite state Markov chains is addressed. In [1, 2], the behavior of a continuous time Markov chain is approximated using a fast time scale, e-independent, continuous time process, and a reduced order perturbed process. The procedure can then be iterated to obtain a complete multiple time scale decomposition. In the discrete time case pres...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->