نتایج جستجو برای: darcy equation
تعداد نتایج: 231435 فیلتر نتایج به سال:
A numerical method as well as a theoretical study of non-Darcy fluid flow through porous and fractured reservoirs is described. The non-Darcy behavior is handled in a three-dimensional, multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation for describing single-phase or multiphase non-Darcy flow and displacement. The non-Darcy flow through a frac...
This paper concerns the discretization of multiphase Darcy flows, in the case of heterogeneous anisotropic porous media and general 3D meshes used in practice to represent reservoir and basin geometries. An unconditionally coercive and symmetric vertex centred approach is introduced in this paper. This scheme extends the Vertex Approximate Gradient scheme (VAG), already introduced for single ph...
Analysis of non-laminar flows in coarse alluvial beds has a wide range of applications in various civil engineering, oil and gas, and geology problems. Darcy equation is not valid to analyze transient and turbulent flows, so non-linear equations should be applied. Non-linear equations are classified into power and binomial equations. Binomial equation is more accurate in a wide range of velocit...
We propose and analyze two novel decoupled numerical schemes for solving the Cahn-HilliardStokes-Darcy (CHSD) model for two-phase flows in karstic geometry. In the first numerical scheme, we explore a fractional step method (operator splitting) to decouple the phase-field (Cahn-Hilliard equation) from the velocity field (Stokes-Darcy fluid equations). To further decouple the Stokes-Darcy system...
In this chapter a general model for the two-phase fluid flow in porous media is presented, together with its simplified form, known as the Richards equation, which is applicable (under specific assumptions) to describe water flow in the vadose zone. In each case the governing equations are formulated at the Darcy scale, using the capillary pressure–saturation relationship and an empirical exten...
In this chapter a general model for the two-phase fluid flow in porous media is presented, together with its simplified form, known as the Richards equation, which is applicable (under specific assumptions) to describe water flow in the vadose zone. In each case the governing equations are formulated at the Darcy scale, using the capillary pressure–saturation relationship and an empirical exten...
[1] This paper presents an approximate analytical solution for non-Darcy flow of a slightly compressible fluid through a fractured reservoir. The analytical solution is obtained using the traditional Warren-Root solution superposed on a dimensionless non-Darcy flow coefficient. The model formulation incorporates the Forchheimer equation into the Warren-Root model for describing non-Darcy flow t...
In this article, we analyze the flow of a fluid through a coupled Stokes-Darcy domain. The fluid in each domain is non-Newtonian, modeled by the generalized nonlinear Stokes equation in the free flow region and the generalized nonlinear Darcy equation in the porous medium. A flow rate is specified along the inflow portion of the free flow boundary. We show existence and uniqueness of a variatio...
There has been a surge of work on models for coupling surface-water with groundwater flows which is at its core the Stokes-Darcy problem, as well as methods for uncoupling the problem into subdomain, subphysics solves. The resulting (Stokes-Darcy) fluid velocity is important because the flow transports contaminants. The numerical analysis and algorithm development for the evolutionary transport...
We study two novel decoupled energy-law preserving numerical schemes for solving the CahnHilliard-Darcy (CHD) system which models two-phase flow in porous medium or in a Hele-Shaw cell. In the first scheme, the velocity in the Cahn-Hilliard equation is treated explicitly so that the Darcy equation is completely decoupled from the Cahn-Hilliard equation. In the second scheme, an intermediate vel...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید