نتایج جستجو برای: convex quadratic symmetric cone programming

تعداد نتایج: 529050  

Journal: :SIAM Journal on Optimization 2011
Bissan Ghaddar Juan C. Vera Miguel F. Anjos

Several types of relaxations for binary quadratic polynomial programs can be obtained using linear, secondorder cone, or semidefinite techniques. In this paper, we propose a general framework to construct conic relaxations for binary quadratic polynomial programs based on polynomial programming. Using our framework, we re-derive previous relaxation schemes and provide new ones. In particular, w...

Journal: :Journal of Inequalities and Applications 2023

Abstract In this paper, we present an inexact multiblock alternating direction method for the point-contact friction model of force-optimization problem (FOP). The friction-cone constraints FOP are reformulated as Cartesian product circular cones. We focus on convex quadratic circular-cone programming FOP, which is exact cone-programming model. Coupled with separable objective function, recast ...

2011
CHEK BENG CHUA C. B. CHUA

We extend the target map, together with the weighted barriers and the notions of weighted analytic centers, from linear programming to general convex conic programming. This extension is obtained from a novel geometrical perspective of the weighted barriers, that views a weighted barrier as a weighted sum of barriers for a strictly decreasing sequence of faces. Using the Euclidean Jordan-algebr...

2000
Sunyoung Kim Masakazu Kojima

A disadvantage of the SDP (semidefinite programming) relaxation method for quadratic and/or combinatorial optimization problems lies in its expensive computational cost. This paper proposes a SOCP (second-order-cone programming) relaxation method, which strengthens the lift-and-project LP (linear programming) relaxation method by adding convex quadratic valid inequalities for the positive semid...

2010
GABRIELE EICHFELDER JANEZ POVH

The well-known result stating that any non-convex quadratic problem over the nonnegative orthant with some additional linear and binary constraints can be rewritten as linear problem over the cone of completely positive matrices (Burer, 2009) is generalized by replacing the nonnegative orthant with an arbitrary closed convex cone. This set-semidefinite representation result implies new semidefi...

2010
Martin Andersen

In the conic formulation of a convex optimization problem the constraints are expressed as linear inequalities with respect to a possibly non-polyhedral convex cone. This makes it possible to formulate elegant extensions of interior-point methods for linear programming to general nonlinear convex optimization. Recent research on cone programming algorithms has particularly focused on three conv...

2005
BAHMAN KALANTARI Leonid Khachiyan

We consider convex programming problems in a canonical homogeneous format, a very general form of Karmarkar’s canonical linear programming problem. More specifically, by homogeneous programming we shall refer to the problem of testing if a homogeneous convex function has a nontrivial zero over a subspace and its intersection with a pointed convex cone. To this canonical problem, endowed with a ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم پایه 1391

abstract: in this thesis, we focus to class of convex optimization problem whose objective function is given as a linear function and a convex function of a linear transformation of the decision variables and whose feasible region is a polytope. we show that there exists an optimal solution to this class of problems on a face of the constraint polytope of feasible region. based on this, we dev...

Journal: :Math. Program. 2003
Farid Alizadeh Donald Goldfarb

Second-order cone programming (SOCP) problems are convex optimization problems in which a linear function is minimized over the intersection of an affine linear manifold with the Cartesian product of second-order (Lorentz) cones. Linear programs, convex quadratic programs and quadratically constrained convex quadratic programs can all be formulated as SOCP problems, as can many other problems t...

2013
M. SEETHARAMA GOWDA R. Sznajder

For a closed cone C in R, the completely positive cone of C is the convex cone KC in S generated by {uu : u ∈ C}. Such a cone arises, for example, in the conic LP reformulation of a nonconvex quadratic minimization problem over an arbitrary set with linear and binary constraints. Motivated by the useful and desirable properties of the nonnegative orthant and the positive semidefinite cone (and ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید