نتایج جستجو برای: connes amenable
تعداد نتایج: 16508 فیلتر نتایج به سال:
Let A be a dual Banach algebra with predual A∗ and consider the following assertions: (A) A is Connes-amenable; (B) A has a normal, virtual diagonal; (C) A∗ is an injective A-bimodule. For general A, all that is known is that (B) implies (A) whereas, for von Neumann algebras, (A), (B), and (C) are equivalent. We show that (C) always implies (B) whereas the converse is false for A = M(G) where G...
In this paper we define $varphi$-Connes module amenability of a dual Banach algebra $mathcal{A}$ where $varphi$ is a bounded $w_{k^*}$-module homomorphism from $mathcal{A}$ to $mathcal{A}$. We are mainly concerned with the study of $varphi$-module normal virtual diagonals. We show that if $S$ is a weakly cancellative inverse semigroup with subsemigroup $E$ of idemp...
In this paper we defined the concept of module amenability of Banach algebras and module connes amenability of module dual Banach algebras.Also we assert the concept of module Arens regularity that is different with [1] and investigate the relation between module amenability of Banach algebras and connes module amenability of module second dual Banach algebras.In the following we studythe...
We investigate the notion of Connes-amenability, introduced by Runde in [14], for bidual algebras and weighted semigroup algebras. We provide some simplifications to the notion of a σWC-virtual diagonal, as introduced in [10], especially in the case of the bidual of an Arens regular Banach algebra. We apply these results to discrete, weighted, weakly cancellative semigroup algebras, showing tha...
Let G be a locally compact group, and let WAP(G) denote the space of weakly almost periodic functions on G. We show that, if G is a [SIN]-group, but not compact, then the dual Banach algebra WAP(G)∗ does not have a normal, virtual diagonal. Consequently, whenever G is an amenable, non-compact [SIN]-group, WAP(G)∗ is an example of a Connes-amenable, dual Banach algebra without a normal, virtual ...
Let G be a locally compact group, and let WAP(G) denote the space of weakly almost periodic functions on G. We show that, if G is a [SIN]-group, but not compact, then the dual Banach algebra WAP(G)∗ does not have a normal, virtual diagonal. Consequently, whenever G is an amenable, non-compact [SIN]-group, WAP(G)∗ is an example of a Connes-amenable, dual Banach algebra without a normal, virtual ...
Let A be a dual Banach algebra with predual A∗ and consider the following assertions: (A) A is Connes-amenable; (B) A has a normal, virtual diagonal; A∗ is an injective A-bimodule. For general A, all that is known is that (B) implies (A) whereas, for von Neumann algebras, (A), (B), and (C) are equivalent. We show that (C) always implies (B) whereas the converse is false. Furthermore, we investi...
Let G be a locally compact group, and let WAP(G) denote the space of weakly almost periodic functions on G. We show that, if G is a [SIN]-group, but not compact, then the dual Banach algebra WAP(G)∗ does not have a normal, virtual diagonal. Consequently, whenever G is an amenable, non-compact [SIN]-group, WAP(G)∗ is an example of a Connes-amenable, dual Banach algebra without a normal, virtual ...
In the theory of operator algebras, classification of group actions on approximately finite dimensional (AFD) factors has been done since Connes’s work [2]. In subfactor theory, various results on classification of group actions have been obtained. The most powerful results have been obtained by Popa in [16], who classified the strongly outer actions of discrete amenable groups on strongly amen...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید