نتایج جستجو برای: complex kdv equation

تعداد نتایج: 1000175  

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

Journal: :Applied Mathematics and Computation 2010
Anwar Ja'afar Mohamad Jawad Marko D. Petkovic Anjan Biswas

This paper carries out the integration of Burgers equation by the aid of tanh method. This leads to the complex solutions for the Burgers equation, KdV–Burgers equation, coupled Burgers equation and the generalized time-delayed Burgers equation. Finally, the perturbed Burgers equation in (1+1) dimensions is integrated by the ansatz method. 2010 Elsevier Inc. All rights reserved.

Journal: :Mathematics and Computers in Simulation 2009
Russell L. Herman Andrew Rose

We investigate simulations of exact solutions of the stochastic Dr. Herman Numerical Realizations of Solutions f the Stochastic KdV Equation Exact Solution of Stochastic KdV Wadati 1983 The One Soliton Solution Under Noise Statistical Averages The Exact Solution for < u(x, t) > via the Diffusion Equation Solving the Diffusion Equation The Damped Stochastic KdV Asymptotics Numerical Simulation o...

1993
Aaron K. Grant Jonathan L. Rosner

The connection between supersymmetric quantummechanics and the Kortewegde Vries (KdV) equation is discussed, with particular emphasis on the KdV conservation laws. It is shown that supersymmetric quantum mechanics aids in the derivation of the conservation laws, and gives some insight into the Miura transformation that converts the KdV equation into the modified KdV equation. The construction o...

2014
Gang wei Wang Tian zhou Xu Tao Feng

In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last,...

2002
Q. P. Liu

In this paper, we derive a Bäcklund transformation for the supersymmetric Kortwegde Vries equation. We also construct a nonlinear superposition formula, which allows us to rebuild systematically for the supersymmetric KdV equation the soliton solutions of Carstea, Ramani and Grammaticos. The celebrated Kortweg-de Vries (KdV) equation was extended into super framework by Kupershmidt [3] in 1984....

2003
Q. P. Liu Y. F. Xie

In this paper, we derive a Bäcklund transformation for the supersymmetric Korteweg-de Vries equation. We also construct a nonlinear superposition formula, which allows us to rebuild systematically for the supersymmetric KdV equation the soliton solutions of Carstea, Ramani and Grammaticos. The celebrated Korteweg-de Vries (KdV) equation was extended into super framework by Kupershmidt [3] in 19...

1992
Stefano Bellucci

We construct a one-parameter family of N=3 supersymmetric extensions of the KdV equation as a Hamiltonian flow on N=3 superconformal algebra and argue that it is non-integrable for any choice of the parameter. Then we propose a modified N=3 super KdV equation which possesses the higher order conserved quantities and so is a candidate for an integrable system. Upon reduction to N=2, it yields th...

2002
Jeremy Schiff

A study is presented of fully discretized lattice equations associated with the KdV hierarchy. Loop group methods give a systematic way of constructing discretizations of the equations in the hierarchy. The lattice KdV system of Nijhoff et al. arises from the lowest order discretization of the trivial, lowest order equation in the hierarchy, bt = bx. Two new discretizations are also given, the ...

Journal: :Appl. Math. Lett. 2014
Junchao Chen Yong Chen Bao-Feng Feng Hanmin Zhu

In this paper, we consider multi-component generalizations of the Hirota–Satsuma coupled Korteweg–de Vries (KdV) equation. By introducing a Lax pair, we present a matrix generalization of the Hirota–Satsuma coupled KdV equation, which is shown to be reduced to a vector Hirota–Satsuma coupled KdV equation. By using Hirota's bilinear method, we find a few soliton solutions to the vector Hirota–Sa...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید