نتایج جستجو برای: coat proteins
تعداد نتایج: 571601 فیلتر نتایج به سال:
Endospore formation by Bacillus subtilis is a complex and dynamic process. One of the major challenges of sporulation is the assembly of a protective, multilayered, proteinaceous spore coat, composed of at least 70 different proteins. Spore coat formation can be divided into two distinct stages. The first is the recruitment of proteins to the spore surface, dependent on the morphogenetic protei...
Specific amino acid substitutions confer a temperature-sensitive-folding (tsf) phenotype to bacteriophage P22 coat protein. Additional amino acid substitutions, called suppressor substitutions (su), relieve the tsf phenotype. These su substitutions are proposed to increase the efficiency of procapsid assembly, favoring correct folding over improper aggregation. Our recent studies indicate that ...
Phage P22 wild-type (WT) coat protein does not require GroEL/S to fold but temperature-sensitive-folding (tsf) coat proteins need the chaperone complex for correct folding. WT coat protein and all variants absolutely require P22 scaffolding protein, an assembly chaperone, to assemble into precursor structures termed procapsids. Previously, we showed that a global suppressor (su) substitution, T...
Spore coat proteins play an important role in maintaining spore structure as well as the resistive capacity of the spores. Spore morphogenetic proteins are responsible for layering the proteinaceous layers during spore morphogenesis. Previous studies have analyzed the dependence of certain coat proteins on the well-known morphogenetic proteins such as SpoIVA, CotE, CotH etc. Yet many coat prote...
Tethering factors have been shown to interact with Rabs and SNAREs and, more recently, with coat proteins. Coat proteins are required for cargo selection and membrane deformation to bud a transport vesicle from a donor compartment. It was once thought that a vesicle must uncoat before it recognizes its target membrane. However, recent findings have revealed a role for the coat in directing a ve...
At maturity, the spores of Dictyostelium are suspended in a viscous fluid droplet, with each spore being surrounded by its own spore coat. Certain glycoproteins characteristic of the spore coat are also dissolved in this fluid matrix after the spore coat is formed. To determine whether any proteins of the coat reside in this fluid phase earlier during the process of spore coat assembly, pairs o...
Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properti...
Clustering of membrane proteins is a hallmark of biological membranes' lateral organization and crucial to their function. However, the physical properties of these protein aggregates remain poorly understood. Ensembles of coat proteins, the example considered here, are necessary for intracellular transport in eukaryotic cells. Assembly and disassembly rates for coat proteins involved in intrac...
Bacterial spores are encased in a multilayered proteinaceous shell known as the coat. In Bacillus subtilis, over 50 proteins are involved in spore coat assembly but the locations of these proteins in the spore coat are poorly understood. Here, we describe methods to estimate the positions of protein fusions to fluorescent proteins in the spore coat by using fluorescence microscopy. Our investig...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید