نتایج جستجو برای: clustering validity
تعداد نتایج: 214312 فیلتر نتایج به سال:
Clustering attempts to discover significant groups present in a data set. It is an unsupervised process. It is difficult to define when a clustering result is acceptable. Thus, several clustering validity indices are developed to evaluate the quality of clustering algorithms results. In this paper, we propose to improve the quality of a clustering algorithm called ”CLUSTER” by using a validity ...
Clustering is a mostly unsupervised procedure and the majority of the clustering algorithms depend on certain assumptions in order to define the subgroups present in a data set. As a consequence, in most applications the resulting clustering scheme requires some sort of evaluation as regards its validity. In this paper we present a clustering validity procedure, which evaluates the results of c...
Clustering validity indices are methods for examining and assessing the quality of data clustering results. Various studies provide a thorough evaluation of their performance using both synthetic and real-world datasets. In this work, we describe various approaches to the topic of evaluation of a clustering scheme. Moreover, a new solution to a problem of selecting an appropriate clustering val...
The limitations in general methods to evaluate clustering will remain difficult to overcome if verifying the clustering validity continues to be based on clustering results and evaluation index values. This study focuses on a clustering process to analyze crisp clustering validity. First, we define the properties that must be satisfied by valid clustering processes and model clustering processe...
Different clustering algorithms achieve different results to certain data sets because most clustering algorithms are sensitive to the input parameters and the structure of data sets. Cluster validity, as the way of evaluating the result of the clustering algorithms, is one of the problems in cluster analysis. In this paper, we build up a framework for cluster validity process, meanwhile a sum-...
Clustering is the process of division of a dataset into subsets that are called clusters, so that objects within a cluster are similar to each other and different from objects of the other clusters. So far, a lot of algorithms in different approaches have been created for the clustering. An effective choice (can combine) two or more of these algorithms for solving the clustering problem. Ensemb...
In this paper, a cluster validity concept from an unsupervised to a supervised manner is presented. Most cluster validity criterions were established in an unsupervised manner, although many clustering methods performed in supervised and semi-supervised environments that used context information and performance results of the model. Context-based clustering methods can divide the input spaces u...
Data clustering method is a process of putting similar data into groups. A clustering method partitions a data set into several groups such that the similarity within a group is larger than among groups. It has been playing an important role in solving many problems in image processing and pattern recognition. In this paper, a new method called hybrid clustering method is obtained by the most r...
Evaluation of clustering results (or cluster validation) is an important and necessary step in cluster analysis, but it is often time-consuming and complicated work. We present a visual cluster validation tool, the Cluster Validity Analysis Platform (CVAP), to facilitate cluster validation. The CVAP provides necessary methods (e.g., many validity indices, several clustering algorithms and proce...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید