نتایج جستجو برای: cluster ensemble selection

تعداد نتایج: 549829  

Journal: :CoRR 2014
Shouvick Mondal Arko Banerjee

Recently ensemble selection for consensus clustering has emerged as a research problem in Machine Intelligence. Normally consensus clustering algorithms take into account the entire ensemble of clustering, where there is a tendency of generating a very large size ensemble before computing its consensus. One can avoid considering the entire ensemble and can judiciously select few partitions in t...

Journal: :Eng. Appl. of AI 2016
Muhammad Yousefnezhad Ali Reihanian Daoqiang Zhang Behrouz Minaei-Bidgoli

This research introduces a new strategy in cluster ensemble selection by using Independency and Diversity metrics. In recent years, Diversity and Quality, which are two metrics in evaluation procedure, have been used for selecting basic clustering results in the cluster ensemble selection. Although quality can improve the final results in cluster ensemble, it cannot control the procedures of ge...

Journal: :journal of advances in computer research 2015
maziar kazemi muhammad yousefnezhad saber nourian

classification ensemble, which uses the weighed polling of outputs, is the art of combining a set of basic classifiers for generating high-performance, robust and more stable results. this study aims to improve the results of identifying the persian handwritten letters using error correcting output coding (ecoc) ensemble method. furthermore, the feature selection is used to reduce the costs of ...

1998
Ronald E. Gangnon Murray K. Clayton

Current statistical methods for disease clustering studies are based on a hypothesis testing paradigm. These methods typically do not produce useful estimates of disease rates or cluster risks. In this paper, we develop a Bayesian procedure for drawing inferences about speciic models for spatial clustering. The proposed methodology incorporates ideas from image analysis , from Bayesian model av...

مقاله حاضر به بررسی سودمندی رگرسیون‌های تجمیعی و روش‌های انتخاب متغیرهای پیش‌بین بهینه (شامل روش مبتنی بر همبستگی و ریلیف) برای پیش‌بینی بازده سهام شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران می‌پردازد. به‌منظور ارزیابی عملکرد رگرسیون تجمیعی، معیارهای ارزیابی (شامل میانگین قدرمطلق درصد خطا، مجذور مربع میانگین خطا و ضریب تعیین) مربوط به پیش‌بینی این روش، با رگرسیون خطی و شبکه‌های عصبی مصنوعی...

2018
Luzie Helfmann Johannes von Lindheim Mattes Mollenhauer Ralf Banisch

Quality assessments of models in unsupervised learning and clustering verification in particular have been a long-standing problem in the machine learning research. The lack of robust and universally applicable cluster validity scores often makes the algorithm selection and hyperparameter evaluation a tough guess. In this paper, we show that cluster ensemble aggregation techniques such as conse...

Ali Yaghoobi Notash, Anaram Yaghoobi Notash, Peiman Bayat, Shahpar Haghighat,

Background: Breast cancer is the second leading cause of cancer death in women, after lung cancer. Due to the importance of predicting this disease, the use of data mining methods in medical research is more significant than before. Data mining algorithms can be a great help in preventing the development of lymphedema in patients. The aim Of this study was to create a diagnosis system that can ...

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

2014
Mohammad Iman Jamnejad Sajad Parvin Ali Heidarzadegan Mohsen Moshki

To learn any problem, many classifiers have been introduced so far. Each of these classifiers has many strengths (positive aspects) and weaknesses (negative aspects) that make it suitable for some specific problems. But there is no powerful solution to indicate which classifier is the best classifier (or at least a good one) for a special problem. Fortunately the ensemble learning provides us w...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید