نتایج جستجو برای: clique polynomial

تعداد نتایج: 102055  

2009
Zohreh O. Akbari

In this paper a deterministic polynomial-time algorithm is presented for the Clique problem. The case is considered as the problem of omitting the minimum number of vertices from the input graph so that none of the zeroes on the graph’s adjacency matrix (except the main diagonal entries) would remain on the adjacency matrix of the resulting subgraph. The existence of a deterministic polynomial-...

Journal: :CoRR 2013
Pawan Tamta Bhagwati Prasad Pande H. S. Dhami

Cardinality Maximum Flow Network Interdiction Problem (CMFNIP) is known to be strongly NP-hard problem in the literature. A particular case of CMFNIP has been shown to have reduction from clique problem. In the present work,an effort is being made to solve this particular case of CMFNIP in polynomial time. Direct implication of this solution is that the clique problem gets solved in polynomial ...

Journal: :CoRR 2012
Ching-Hao Liu Maw-Shang Chang Ton Kloks Sheung-Hung Poon

We show that edge-clique graphs of cocktail party graphs have unbounded rankwidth. This, and other observations lead us to conjecture that the edge-clique cover problem is NP-complete for cographs. We show that the independent set problem on edge-clique graphs of cographs and of distance-hereditary graphs can be solved in polynomial time. We show that the independent set problem on edge-clique ...

2010
Pinar Heggernes Daniel Meister Udi Rotics

Clique-width is an important graph parameter whose computation is NP-hard. In fact we do not know of any other algorithm than brute force for the exact computation of clique-width on any non-trivial graph class. Results so far indicate that proper interval graphs constitute the first interesting graph class on which we might have hope to compute clique-width, or at least its linear variant line...

2002
Jong Tae Kim Dong Ryeol Shin

Numerous problems can be modeled as clique partitioning problems in digital design synthesis. In this paper, we present two new polynomial time heuristic algorithms for efficient clique partitioning with or without limiting the maximum clique size. The goal of clique partitioning is to partition a graph into a minimum number of cliques. The basic approach of the new algorithm is to find small c...

Journal: :CoRR 2014
Pawan Tamta Bhagwati Prasad Pande H. S. Dhami

Maximum Flow Network Interdiction Problem (MFNIP) is known to be strongly NP-hard problem. We solve a simple form of MFNIP in polynomial time. We review the reduction of MFNIP from the clique problem. We propose a polynomial time solution to the Clique Problem.

Journal: :CoRR 2015
Hector A. Cardenas Chester Holtz Maria Janczak Philip Meyers Nathaniel S. Potrepka

In this work, we critique two papers, “A Polynomial-Time Solution to the Clique Problem” by Tamta, Pande, and Dhami [3], and “A Polynomial-Time Algorithm For Solving Clique Problems” by LaPlante [1]. We summarize and analyze both papers, noting that the algorithms presented in both papers are flawed. We conclude that neither author has successfully established that P = NP.

Journal: :Electr. J. Comb. 2009
Kerri Morgan Graham Farr

The chromatic polynomial gives the number of proper λ-colourings of a graph G. This paper considers factorisation of the chromatic polynomial as a first step in an algebraic study of the roots of this polynomial. The chromatic polynomial of a graph is said to have a chromatic factorisation if P (G,λ) = P (H1, λ)P (H2, λ)/P (Kr , λ) for some graphs H1 and H2 and clique Kr. It is known that the c...

Journal: :SIAM J. Discrete Math. 2009
Michael R. Fellows Frances A. Rosamond Udi Rotics Stefan Szeider

Clique-width is a graph parameter that measures in a certain sense the complexity of a graph. Hard graph problems (e.g., problems expressible in Monadic Second Order Logic with second-order quantification on vertex sets, that includes NP-hard problems such as 3-colorability) can be solved in polynomial time for graphs of bounded clique-width. We show that the clique-width of a given graph canno...

2009
Pinar Heggernes Daniel Meister Charis Papadopoulos

A k-path power is the k-power graph of a simple path of arbitrary length. Path powers form a non-trivial subclass of proper interval graphs. Their clique-width is not bounded by a constant, and no polynomial-time algorithm is known for computing their clique-width or linear clique-width. We show that k-path powers above a certain size have linear clique-width exactly k + 2, providing the first ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->