نتایج جستجو برای: chebyshev gauss lobatto points

تعداد نتایج: 279438  

Journal: :Math. Comput. 2001
Len P. Bos Mark A. Taylor Beth A. Wingate

Tensor products of Gauss-Lobatto quadrature points are frequently used as collocation points in spectral element methods. Unfortunately, it is not known if Gauss-Lobatto points exist in non-tensor-product domains like the simplex. In this work, we show that the n-dimensional tensor-product of Gauss-Lobatto quadrature points are also Fekete points. This suggests a way to generalize spectral meth...

Journal: :Applied Mathematics and Computation 2005
Alfredo Eisinberg Giuseppe Fedele

This paper deals with Vandermonde matrices Vn whose nodes are the Gauss–Lobatto Chebyshev nodes, also called extrema Chebyshev nodes. We give an analytic factorization and explicit formula for the entries of their inverse, and explore its computational issues. We also give asymptotic estimates of the Frobenius norm of both Vn and its inverse and present an explicit formula for the determinant o...

Journal: :iranian journal of mathematical chemistry 2012
a. saadatmandi m. r. azizi

in this paper, a chebyshev finite difference method has been proposed in order to solvenonlinear two-point boundary value problems for second order nonlinear differentialequations. a problem arising from chemical reactor theory is then considered. the approachconsists of reducing the problem to a set of algebraic equations. this method can be regardedas a non-uniform finite difference scheme. t...

2017
Zhijian Rong Jie Shen Haijun Yu

We develop a sparse grid spectral element method using nodal bases on Chebyshev-Gauss-Lobatto points for multi-dimensional elliptic equations. Since the quadratures based on sparse grid points do not have the accuracy of a usual Gauss quadrature, we construct the mass and stiffness matrices using a pseudo-spectral approach, which is exact for problems with constant coefficients and uniformly st...

Journal: :Journal of Approximation Theory 2013
Len Bos Stefano De Marchi Kai Hormann Jean Sidon

It has recently been shown that the Lebesgue constant for Berrut’s rational interpolant at equidistant nodes grows logarithmically in the number of interpolation nodes. In this paper we show that the same holds for a very general class of well-spaced nodes and essentially any distribution of nodes that satisfy a certain regularity condition, including Chebyshev–Gauss–Lobatto nodes as well as ex...

2006
P. Williams

This paper proposes a direct approach for solving optimal control problems. The time domain is divided into multiple subdomains, and a Lagrange interpolating polynomial using the Legendre–Gauss– Lobatto points is used to approximate the states and controls. The state equations are enforced at the Legendre–Gauss–Lobatto nodes in a nonlinear programming implementation by partial Gauss–Lobatto qua...

Journal: :SIAM J. Numerical Analysis 2000
Mark A. Taylor Beth A. Wingate Rachel E. Vincent

On the line and its tensor products, Fekete points are known to be the Gauss–Lobatto quadrature points. But unlike high-order quadrature, Fekete points generalize to non-tensor-product domains such as the triangle. Thus Fekete points might serve as an alternative to the Gauss–Lobatto points for certain applications. In this work we present a new algorithm to compute Fekete points and give resul...

2014
Zahra Masouri Saeed Hatamzadeh-Varmazyar Esmail Babolian

The focus of this paper is on the numerical solution of linear systems of Fredhlom integral equations of the second kind. For this purpose, the Chebyshev cardinal functions with Gauss-Lobatto points are used. By combination of properties of these functions and the effective Clenshaw-Curtis quadrature rule, an applicable numerical method for solving the mentioned systems is formulated. Some erro...

1994
David Gottlieb Chi-Wang Shu

The paper presents a method to recover exponential accuracy at all points (including at the discontinuities themselves), from the knowledge of an approximation to the interpolation polynomial (or trigonometrical polynomial). We show that if we are given the collocation point values (or' an highly accurate approximation) at the Gauss or Gauss-Lobatto points, we can reconstruct an uniform exponen...

2007
JESÚS VIGO-AGUIAR HIGINIO RAMOS

We consider the construction of a special family of Runge–Kutta (RK) collocation methods based on intra-step nodal points of Chebyshev–Gauss–Lobatto type, with A-stability and stiffly accurate characteristics. This feature with its inherent implicitness makes them suitable for solving stiff initial-value problems. In fact, the two simplest cases consist in the well-known trapezoidal rule and th...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید