نتایج جستجو برای: cds tio2
تعداد نتایج: 30298 فیلتر نتایج به سال:
Synthesis of nanoparticles of TiO2, Pt, CdS, and their binary and ternary combinations were made on zeolite Y starting frommolecular precursors that are ion exchanged into the zeolite.Nanoclusters ofTiO2 in the anatase formwere formed from titanyl ions at low loadings of Ti (1 per 2.5 supercages). CdS (hexagonal form) andmetallic Pt were formed fromCd2þ and Pt(NH3)4 2þ ion exchanged into the ze...
Semiconductor photocatalysis has been intensively studied in recent decades for a wide variety of application such as hydrogen production from water splitting and water and air treatment. The majority of photocatalysts are, however, wide band-gap semiconductors which are active only under UV irradiation. In order to effectively utilize visible solar radiation, this thesis investigates various t...
طی سالهای اخیر، فرایند فتوکاتالیستی نیمرساناها برای حذف ترکیبات آلی از آب، توجه زیادی را به دلیل پتانسیل این فرایند بهعنوان یک فناوری تصفیه کمهزینه و دوستدار محیطزیست به خود جلب کرده است. در این پژوهش با هدف بهدست آوردن مقدار بهینه محتوای CuS و CdS در نانوفتوکاتالیستهای CuS-CdS/TiO2، چهار نمونه با مقدارهای متفاوت CuS و CdS با روش آب گرمایی سنتز شدند. نمونههای سنتز شده با روشهای XRD، F...
A new approach by inserting a layer of ZnSe QDs was studied to enhance the adsorption of CdS/CdSe QDs resulting in much improved power conversion efficiency. ZnSe, CdS and CdSe QDs were sequentially assembled on a nanocrystalline TiO2 film to prepare a ZnSe/CdS/CdSe sensitized photoelectrode for QD-sensitized solar cell (QDSSC) applications. The results show that the performance of QDSSCs is st...
A novel photoanode architecture with plasmonic silver (Ag) nanostructures embedded in titania (TiO2), which served as the wide band gap semiconducting support and CdS quantum dots (QDs), as light absorbers, is presented. Ag nanostructures were prepared by a polyol method and are comprised of clumps of nanorods, 15-35 nm wide, interspersed with globular nanoparticles and they were characterized ...
The optical and structural properties of cadmium and lead sulfide nanocrystals deposited on mesoporous TiO2 substrates via the successive ionic layer adsorption and reaction method were comparatively investigated by reflectance, transmittance, micro-Raman and photoluminescence measurements. Enhanced interfacial electron transfer is evidenced upon direct growth of both CdS and PbS on TiO2 throug...
This paper describes an easy and time-saving strategy for the fabrication of heterogeneous nanotubular arrays of TiO2-CdS (TCHNTAs) on transparent conductive glass (FTO) and their photoelectrochemical properties. The use of transparent FTO instead of opaque Ti substrate allows incident light from the substrate side. The anodized TiO2 nanotubular arrays were firstly detached from Ti substrate by...
Photocatalysis technology could utilize solar energy to degrade many toxic pollutants and provides possibility to deal with unsymmetrical dimethylhydrazine (UDMH) wastewater with less energy consumption. In this study, well-aligned TiO2 nanorod arrays (TiO2 NRAs) were grown directly on transparent conductive glass (FTO) via a hydrothermal method, and TiO2 NRAs/CdS heterostructure films were pre...
The photocatalytic production of molecular hydrogen (H2) on ternary composites of Pt, CdS, and sodium trititanate nanotubes (NaxH2-xTi3O7, TNTs) is examined in an aqueous 2-propanol (IPA) solution (typically 5 vol%) at a circum-neutral pH under visible light (λ > 420 nm). The H2 production rates are dependent on the Pt-loading level, and the optimum production rate in the Pt/CdS/TNTs is approxi...
Enhancing the charge transfer process in nanocrystal sensitized solar cells is vital for the improvement of their performance. In this work we show a means of increasing photo-induced ultrafast charge transfer in successive ionic layer adsorption and reaction (SILAR) CdS-TiO2 nanocrystal heterojunctions using pulsed laser sintering of TiO2 nanocrystals. The enhanced charge transfer was attribut...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید