نتایج جستجو برای: catacondensed hexagonal system
تعداد نتایج: 2242900 فیلتر نتایج به سال:
The Fibonacci dimension fdim(G) of a graph G was introduced in [1] as the smallest integer d such that G admits an isometric embedding into Γd, the d-dimensional Fibonacci cube. The Fibonacci dimension of the resonance graphs of catacondensed benzenoid systems is studied. This study is inspired by the fact, that the Fibonacci cubes are precisely the resonance graphs of a subclass of the catacon...
As a strengthening of the concept global forcing number graph G, complete G is cardinality minimum edge subset to which restriction every perfect matching M set M. Xu et al. (J Comb Opt 29: 803–814, 2015) revealed that also antifores each matching, and obtained for catacondensed hexagonal system, equal Clar plus hexagons (Chan MATCH Commun Math Comput Chem 74: 201–216, 2015). In this paper, we ...
The Fibonacci dimension fdim(G) of a graph G was introduced in [7] as the smallest integer d such that G admits an isometric embedding into Qd, the d-dimensional Fibonacci cube. A somewhat new combinatorial characterization of the Fibonacci dimension is given, which enables more comfortable proofs of some previously known results. In the second part of the paper the Fibonacci dimension of the r...
The Wiener Index, or the Wiener Number, also known as the “sum of distances” of a connected graph, is one of the quantities associated with a molecular graph that correlates nicely to physical and chemical properties, and has been studied in depth. An index proposed by Schultz is shown to be related to the Wiener Index for trees, and Ivan Gutman proposed a modification of the Schultz index with...
A Clar set of a benzenoid graph B is a maximum set of independent alternating hexagons over all perfect matchings of B. The Clar number of B, denoted by Cl(B), is the number of hexagons in a Clar set for B. In this paper, we first prove some results on the independence number of subcubic trees to study the Clar number of catacondensed benzenoid graphs. As the main result of the paper we prove a...
the first geometric-arithmetic index was introduced in the chemical theory as the summationof 2 du dv /(du dv ) overall edges of the graph, where du stand for the degree of the vertexu. in this paper we give the expressions for computing the first geometric-arithmetic index ofhexagonal systems and phenylenes and present new method for describing hexagonal systemby corresponding a simple graph...
The concept of numerical Kekulé structures is used for coding and ordering geometrical (standard) Kekulé structures of several classes of polycyclic conjugated molecules: catacondensed, pericondensed, and fully arenoid benzenoid hydrocarbons, thioarenoids, and [N]phenylenes. It is pointed out that the numerical Kekulé structures can be obtained for any class of polycyclic conjugated systems tha...
The first geometric-arithmetic index was introduced in the chemical theory as the summation of 2 du dv /(du dv ) overall edges of the graph, where du stand for the degree of the vertex u. In this paper we give the expressions for computing the first geometric-arithmetic index of hexagonal systems and phenylenes and present new method for describing hexagonal system by corresponding a simple g...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید