نتایج جستجو برای: cantor intersection theorem
تعداد نتایج: 173649 فیلتر نتایج به سال:
In this paper, we give a complete proof of Theorem 4.1(ii) and a new elementary proof of Theorem 4.1(i) in [Li and Shen, On the intersection of the normalizers of the derived subgroups of all subgroups of a finite group, J. Algebra, 323 (2010) 1349--1357]. In addition, we also give a generalization of Baer's Theorem.
Properties of Cantor manifolds that could arise in the quantum gravitational path integral are investigated. The spin geometry is compared to the intersection of Cantor sets. Given a network consisting of unions of Riemann surfaces in a superstring theory, the probable value of the number of dimensions is initially ten, and after compactification of six coordinates, the space-time would be expe...
A generating IFS of a Cantor set F is an IFS whose attractor is F . For a given Cantor set such as the middle-3rd Cantor set we consider the set of its generating IFSs. We examine the existence of a minimal generating IFS, i.e. every other generating IFS of F is an iterating of that IFS. We also study the structures of the semi-group of homogeneous generating IFSs of a Cantor set F in R under t...
This paper is a continuation of a previous author’s article; the result is now extended to the case when the lattice under consideration need not have the least element.
In the operator version of the Hahn-Banach-Kantorovich theorem, the range space Y is assumed to be Dedekind complete. Y. A. Abramovich and A. W. Wickstead improved this by assuming only the Cantor property on Y . Along the same line of reasoning, we obtained in this paper several new results of this type. We also see that assuming Cantor property on the domain spaces instead gives good results,...
We establish formulas for bounds on the Haudorff measure of the intersection of certain Cantor sets with their translates. As a consequence we obtain a formula for the Hausdorff dimensions of these intersections.
The issue is uniqueness of representation by multiple trigonometric series. Two basic uniqueness questions, one about series which converge to zero and the other about series which converge to an integrable function, are asked for each of four modes of convergence: unrestricted rectangular convergence, spherical convergence, square convergence, and restricted rectangular convergence. Thus there...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید