نتایج جستجو برای: bounded priestley space

تعداد نتایج: 547671  

Journal: :Math. Log. Q. 1999
Sergio A. Celani

In this note we introduce and study algebras ( L , V, A, 1, 0,l) of type (2,2,1,1,1) such that ( L , V, A, 0 , l ) is a bounded distributive lattice and -,is an operator that satisfies the conditions -,(a V b ) = -,a A -,b and -0 = 1. We develop the topological duality between these algebras and Priestley spaces with a relation. In addition, we characterize the congruences and the subalgebras o...

2006
E. T. Schmidt Jonathan David Farley J. D. FARLEY

Abstract. Let L be a lattice and M a bounded distributive lattice. Let ConL denote the congruence lattice of L, P (M) the Priestley dual space of M , and L (M) the lattice of continuous order-preserving maps from P (M) to L with the discrete topology. It is shown that Con(L ) ∼= (ConL) P (ConM) Λ , the lattice of continuous order-preserving maps from P (ConM) to ConL with the Lawson topology. V...

Journal: :journal of mathematical modeling 0
morteza saheli morteza saheli

in the present paper, we rst modify the concepts of weakly fuzzy boundedness, strongly fuzzy boundedness, fuzzy continuity, strongly fuzzy continuity and weakly fuzzy continuity. then, we try to nd some relations by making a comparative study of the fuzzy norms of linear operators.

Journal: :Order 2002
Guram Bezhanishvili Ray Mines Patrick J. Morandi

Let R be a quasi-order on a compact Hausdorff topological space X. We prove that if X is scattered, then R satisfies the Priestley separation axiom if and only if R is closed in the product space X × X. Furthermore, if X is not scattered, then we show that there is a quasi-order on X that is closed in X × X but does not satisfy the Priestley separation axiom. As a result, we obtain a new charac...

ژورنال: پژوهش های ریاضی 2021

  For an f-ring  with bounded inversion property, we show that   , the set of all basic z-ideals of , partially ordered by inclusion is a bounded distributive lattice. Also, whenever  is a semiprimitive ring, , the set of all basic -ideals of , partially ordered by inclusion is a bounded distributive lattice. Next, for an f-ring  with bounded inversion property, we prove that  is a complemented...

Journal: :international journal of industrial mathematics 2014
a. razani

the notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $cat(0)$ space, where the curvature is bounded from above by zero. in fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. in this paper, w...

Journal: :Ann. Pure Appl. Logic 2009
Peter Jipsen

It is shown that the Boolean center of complemented elements in a bounded integral residuated lattice characterizes direct decompositions. Generalizing both Boolean products and poset sums of residuated lattices, the concepts of poset product, Priestley product and Esakia product of algebras are defined and used to prove decomposition theorems for various ordered algebras. In particular, we sho...

2013
Ramon Jansana Umberto Rivieccio

We present a new Priestley-style topological duality for bounded N4-lattices, which are the algebraic counterpart of paraconsistent Nelson logic. Our duality differs from the existing one, due to Odintsov, in that we only rely on Esakia duality for Heyting algebras and not on the duality for De Morgan algebras of Cornish and Fowler. A major advantage of our approach is that for our topological ...

Journal: :Applied Categorical Structures 2012
Brian A. Davey Miroslav Haviar Hilary A. Priestley

Traditionally in natural duality theory the algebras carry no topology and the objects on the dual side are structured Boolean spaces. Given a duality, one may ask when the topology can be swapped to the other side to yield a partner duality (or, better, a dual equivalence) between a category of topological algebras and a category of structures. A prototype for this procedure is provided by the...

D. Varasteh Tafti M. Azhini,

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید