نتایج جستجو برای: bmp15
تعداد نتایج: 294 فیلتر نتایج به سال:
Mammalian oocytes are deficient in their ability to carry out glycolysis. Therefore, the products of glycolysis that are necessary for oocyte development are provided to oocytes by companion cumulus cells. Mouse oocytes secrete paracrine factors that promote glycolysis in cumulus cells. The objective of this study was to identify paracrine factors secreted by oocytes that promote glycolysis and...
21 Vertebrate oocytes actively contribute to follicle development by secreting a variety of 22 growth factors, among which bone morphogenetic protein 15 (BMP15/Bmp15) and 23 growth differentiation factor 9 (GDF9/Gdf9) have been paid particular attention. In the 24 present study, we describe the cellular localization, the developmental profiles, and the 25 response to unilateral ovariectomy (a p...
Partial neutralization of bone morphogenetic protein 15 (BMP15) bioactivity by immunization is known to increase ovulation rate in sheep. However, it remains uncertain whether BMP15 vaccination would be a suitable procedure for increasing lambing rate. The aim of this study was to compare the efficacy of a BMP15 vaccination treatment on lamb production to that of commercially-available androste...
Bone Morphogenetic Protein 15 (BMP15) is a TGFβ-like oocyte-derived growth factor involved in ovarian folliculogenesis as a critical regulator of many granulosa cell processes. Alterations of the BMP15 gene have been found associated with different ovarian phenotypic effects depending on the species, from sterility to increased prolificacy in sheep, slight subfertility in mouse or associated wi...
BACKGROUND A large number of studies have contributed to understanding the general mechanisms driving ovarian folliculogenesis in humans and show a complex endocrine dialog between the central nervous system, the pituitary and the ovary, integrated by various intraovarian paracrine messages. The role of intraovarian paracrine regulation has acquired more relevance in the recent years owing to t...
Bone morphogenetic proteins (BMPs) and the growth factors (GDFs) play an important role in ovarian folliculogenesis and essential regulator of processes of numerous granulosa cells. BMP15 gene variations linked to various ovarian phenotypic consequences subject to the species, from infertility to improved prolificacy in sheep, primary ovarian insufficiency in women or associated with minor subf...
The present study has evaluated the association of growth differentiation factor9 (GDF9) and bone morphogenetic protein15 (BMP15) mRNA expression in cumulus-oocyte complexes (COCs) of buffalo ovary during in vitro maturation (IVM). GDF9 and BMP15 are expressed specifically in mammalian oocytes and also participate in cumulus-oocyte crosstalk. Quantitative real-time polymerase chain reaction (qR...
Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor beta superfamily, is specifically expressed in oocytes and is essential for sheep prolificacy. Reported mutations in this gene cause increased ovulation rate and infertility in a dosage-sensitive manner. In this work, a new naturally occurring mutation in the BMP15 gene from the ovine Rasa Aragonesa breed is des...
BACKGROUND AND OBJECTIVE Mutations in bone morphogenic protein 15 (BMP15) and growth/differentiation factor 9 (GDF9) lead to altered fertility in animal models. In the human, a heterozygous point mutation of BMP15 has been associated with premature ovarian failure (POF). SUBJECT AND METHODS We have directly sequenced both genes in a cohort of 203 POF patients presenting with primary or second...
In the ovary, connexin-coupled gap junctions in granulosa cells play crucial roles in follicular and oocyte development as well as in corpus luteum formation. Our previous work has shown that theca cell-derived bone morphogenetic protein (BMP)4 and BMP7 decrease gap junction intercellular communication (GJIC) activity via the down-regulation of connexin43 (Cx43) expression in immortalized human...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید