Let $\Omega\subset\Bbb{R}^{n+1}$ have minimal Gaussian surface area among all sets satisfying $\Omega=-\Omega$ with fixed volume. $A=A_x$ be the second fundamental form of $\partial\Omega$ at $x$, i.e., $A$ is matrix first order partial derivatives unit normal vector $x\in\partial\Omega$. For any $x=(x_1,\ldots,x_{n+1})\in\Bbb{R}^{n+1}$, let $\gamma_n(x)=(2\pi)^{-n/2}e^{-(x_1^2+\cdots+x_{n+1}^2...