نتایج جستجو برای: approximately higher ternary jordan derivation
تعداد نتایج: 1240060 فیلتر نتایج به سال:
we have devided the thesis in to five chapters. the first recollects facts from purely algebraic theory of jordan algebras and also basic properties of jb and jb* - algebras which are needed in the sequel. in the second chapter we extend to jb* - algebras, a classical result due to cleveland [8]. this result shows shows the weakness of jb* - norm topology on a jb* - algebera. in chapter three, ...
let h be an infinite--dimensional hilbert space and k(h) be the set of all compact operators on h. we will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher jordan derivation on k(h) associated with the following cauchy-jencen type functional equation 2f(frac{t+s}{2}+r)=f(t)+f(s)+2f(r) for all t,s,rin k(h).
Let R be a ring and U be a Lie ideal of R. Suppose that σ, τ are endomorphisms of R. A family D = {d n } n ∈ N of additive mappings d n :R → R is said to be a (σ,τ)- higher derivation of U into R if d 0 = I R , the identity map on R and [Formula: see text] holds for all a, b ∈ U and for each n ∈ N. A family F = {f n } n ∈ N of additive mappings f n :R → R is said to be a generalized (σ,τ)- high...
let be a banach algebra. let be linear mappings on . first we demonstrate a theorem concerning the continuity of double derivations; especially that all of -double derivations are continuous on semi-simple banach algebras, in certain case. afterwards we define a new vocabulary called “-higher double derivation” and present a relation between this subject and derivations and finally give some ...
Let $mathcal{A}$ be a unital Banach algebra, $mathcal{M}$ be a left $mathcal{A}$-module, and $W$ in $mathcal{Z}(mathcal{A})$ be a left separating point of $mathcal{M}$. We show that if $mathcal{M}$ is a unital left $mathcal{A}$-module and $delta$ is a linear mapping from $mathcal{A}$ into $mathcal{M}$, then the following four conditions are equivalent: (i) $delta$ is a Jordan left de...
Let A be a unital R-algebra and M be a unital A-bimodule. It is shown that every Jordan derivation of the trivial extension of A by M, under some conditions, is the sum of a derivation and an antiderivation.
begin{abstract} If $F,D:Rto R$ are additive mappings which satisfy $F(x^{n}y^{n})=x^nF(y^{n})+y^nD(x^{n})$ for all $x,yin R$. Then, $F$ is a generalized left derivation with associated Jordan left derivation $D$ on $R$. Similar type of result has been done for the other identity forcing to generalized derivation and at last an example has given in support of the theorems. end{abstract}
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید