نتایج جستجو برای: anti involutions

تعداد نتایج: 364149  

2005
Shuguang Wang

We classify, in terms of simple algebraic equations, the fixed point sets of the moduli space of stable bundles over genus 2 curves with anti-holomorphic involutions. 1991 MS Classification: 14H60, 51M30.

2012
PETER ALBERS

In this note we prove that the space of linear anti-symplectic involutions is the homogenous space Gl(n,R)\Sp(n). This result is motivated by the study of symmetric periodic orbits in the restricted 3-body problem.

Journal: :Journal of Pure and Applied Algebra 2003

Journal: :Contemporary mathematics 2021

This is an expanded version of the talk given by first author at conference “Topology, Geometry, and Dynamics: Rokhlin – 100”. The purpose this was to explain our current results on classification rational symplectic 4-manifolds equipped with anti-symplectic involution. A detailed exposition will appear elsewhere.

Journal: :Annales Mathématiques Du Québec 2021

Building on previous results [17, 35], we complete the classification of compact oriented Einstein 4-manifolds with $$\det (W^+) > 0$$ . There are, up to diffeomorphism, exactly 15 manifolds that carry such metrics, and, each these manifolds, metrics sweep out one connected component corresponding moduli space.

2008
Naoyuki Monden

Let Σg,b denote a closed orientable surface of genus g with b punctures and let Mod(Σg,b) denote its mapping class group. In [Luo] Luo proved that if the genus is at least 3, Mod(Σg,b) is generated by involutions. He also asked if there exists a universal upper bound, independent of genus and the number of punctures, for the number of torsion elements/involutions needed to generate Mod(Σg,b). B...

1991
Jerzy Lukierski Anatol Nowicki Henri Ruegg

We describe four types of inner involutions of the Cartan-Weyl basis providing (for |q| = 1 and q real) three types of real quantum Lie algebras: Uq(O(3, 2)) (quantum D = 4 anti-de-Sitter), Uq(O(4, 1)) (quantum D = 4 de-Sitter) and Uq(O(5)). We give also two types of inner involutions of the Cartan-Chevalley basis of Uq(Sp(4;C)) which can not be extended to inner involutions of the Cartan-Weyl ...

2015
Xiangneng Zeng

In this paper, confirming a conjecture of Kaplan et al., we prove that every abelian group G, which is of odd order or contains exactly three involutions, has the zerosum-partition property. As a corollary, every tree with |G| vertices and at most one vertex of degree 2 is G-anti-magic.

Journal: :Journal of the Korean Mathematical Society 2007

Journal: :Bulletin of the American Mathematical Society 1968

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید