نتایج جستجو برای: ant colony optimisation

تعداد نتایج: 87633  

Journal: :International Journal of Intelligent Systems 2022

Data stream mining has recently emerged in response to the rapidly increasing continuous data generation. While majority of Ant Colony Optimisation (ACO) rule induction algorithms have proved be successful producing both accurate and comprehensive classification models nonstreaming (batch) settings, currently ACO-based for problems are not suited applied mining. One main challenges is iterative...

2010
Vatroslav Dino Matijas Goran Molnar Marko Cupic Domagoj Jakobovic Bojana Dalbelo Basic

The ant colony optimisation metaheuristic has shown promise on simplified artificial instances of university course timetabling problems. However, limited work has been done applying it to practical timetabling problems. In this paper, we describe the application of the ant colony optimisation to a highly constrained real–world instance of the university course timetabling problem. We present t...

2006
Martin Gruber

This master thesis presents an ant colony optimisation algorithm for the bounded diameter minimum spanning tree problem, a NP-hard combinatorial optimisation problem with various application fields, e.g. when considering certain aspects of quality in communication network design. The algorithm is extended with local optimisation in terms of a variable neighbourhood descent algorithm based on fo...

Journal: :JCP 2012
FuQing Zhao JianXin Tang YaHong Yang

Manufacturing supply chain(SC) faces changing business environment and various customer demands. Pareto Ant Colony Optimisation (P-ACO) in order to obtain the non-dominated set of different SC designs was utilized as the guidance for designing manufacturing SC. PACO explores the solution space on the basis of applying the Ant Colony Optimisation algorithm and implementing more than one pheromon...

2002
James Montgomery Marcus Randall

Many animals use chemical substances known as pheromones to induce behavioural changes in other members of the same species. The use of pheromones by ants in particular has lead to the development of a number of computational analogues of ant colony behaviour including Ant Colony Optimisation. Although many animals use a range of pheromones in their communication, ant algorithms have typically ...

2004
A. E. Rizzoli F. Oliverio R. Montemanni L. M. Gambardella

Ant Colony Optimisation is a metaheuristic for combinatorial optimisation problems. In this paper we show its successful application to the Vehicle Routing Problem (VRP). First, we introduce VRP and its many variants, such as VRP with Time Windows, Time Dependent VRP, Dynamic VRP, VRP with Pickup and Delivery. These variants have been formulated in order to bring the VRP as close as possible to...

Journal: :مهندسی عمران فردوسی 0
محمد هادی افشار ابراهیم رضایی رامتین معینی

ant colony optimisation (aco) algorithm and adaptive refinement mechanism are used in this paper for solution of optimization problems. many of the real engineering problems are، however، of continuous nature and finding their solution by discrete ant based algorithms requires discretisation of the decision variables in which affected the convergence and performance of the algorithm. in this pa...

Journal: :Expert Syst. Appl. 2015
Jose B. Escario Juan F. Jiménez José Maria Giron-Sierra

Ant Colony Extended (ACE) is a novel algorithm belonging to the general Ant Colony Optimisation (ACO) framework. Two specific features of ACE are: the division of tasks between two kinds of ants, namely patrollers and foragers, and the implementation of a regulation policy to control the number of each kind of ant during the searching process. In addition, ACE does not employ the construction g...

Journal: :IET quantum communication 2021

Ant colony optimisation (ACO) is a commonly used meta-heuristic to solve complex combinatorial problems like the travelling salesman problem (TSP), vehicle routing (VRP) etc. However, classical ACO algorithms provide better optimal solutions but do not reduce computation time overhead significant extent. Algorithmic speed-up can be achieved by using parallelism offered quantum computing. Existi...

2003
P. Cardoso M. Jesus A. Márquez

The Ant Colony Optimisation Algorithm (ACO) supports the development of a system for a multi-objective network optimisation problem. The ACO system bases itself on an agent’s population and, in this case, uses a multi-level pheromone trail associated to a cost vector, which will be optimised.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->