نتایج جستجو برای: anfis
تعداد نتایج: 3117 فیلتر نتایج به سال:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated ...
Optical character recognition (OCR) is becoming a powerful tool in the field of Character Recognition, now a days. In the existing globalized environment, OCR can play a vital role in different application fields. Basically, OCR technique converts images into editable format. This technique converts images in the form of documents such as we can edit, modify and store data more safely for long ...
This paper presents the design of the hybrid PID-ANFIS controller for controlling the speed of the Brushless Direct Current Motor (BLDCM). The objective of this work is to obtain the BLDCM speed controller equipment effectively. The hybrid PID-ANFIS controller is a combination of classical PID controller and ANFIS controller. This method is applied to BLDCM speed controller by simulation and im...
In this study, a new approach based on adaptive neuro-fuzzy inference system (ANFIS) was presented for detection of electrocardiographic changes in patients with partial epilepsy. Decision making was performed in two stages: feature extraction using the wavelet transform (WT) and the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. Two...
Abstract Electroencephagram (EEG) is the recording of electrical activity of the brain. Though it is intended to record cerebral signals,it also records the signals that are not of cerebral origin called artifacts. Artifact removal from EEG signals is essential for better diagnosis. This paper proposes a hybrid learning algorithm based on Adaptive Neuro-Fuzzy Inference System (ANFIS) for elimin...
This paper proposes an Adaptive Neuro-Fuzzy Inference System (ANFIS) for predicting the surface roughness in turning operation for set of given cutting parameters, namely cutting speed, feed rate and depth of cut. Two different membership functions, triangular and bell shaped, were adopted during the training process of ANFIS in order to compare the prediction accuracy of surface roughness by t...
The quantification and prediction of inter-agent dependency requirements is one of the main concerns in Agent Oriented Requirements Engineering. To evaluate exertion load of an agent within resource constraints, this work provides a comparative analysis of Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). ANN is widely known due to its capability of learning the...
-Now a day we have various types of intelligent computing tools such as artificial neural network (ANN) and fuzzy logic approaches are proving to be skillful when applied to a different kind of problems. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for classification of electrocardiogram (ECG) signals. here we applied tool for detecting the two dif...
This paper proposes an approach to tune an Adaptive Neuro Fuzzy Inference System (ANFIS) inverse controller using Iterative Learning Control (ILC). The control scheme consists of an ANFIS inverse model and learning control law. Direct ANFIS inverse controller may not guarantee satisfactory response due to different uncertainties associated with operating conditions and noisy training data. In t...
This paper presents a rotor position estimation technique for a 6/4 switched reluctance machine based on Adaptive Neuro fuzzy Inference System (ANFIS). This technique is applied for modelling the nonlinear rotor position of SRM using the magnetization characteristics of the machine. ANFIS has a strong nonlinear approximation ability which could be used for nonlinear modelling and its real time ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید