نتایج جستجو برای: 2 conjecture
تعداد نتایج: 2550288 فیلتر نتایج به سال:
let $e$ be an elliptic curve over $bbb{q}$ with the given weierstrass equation $ y^2=x^3+ax+b$. if $d$ is a squarefree integer, then let $e^{(d)}$ denote the $d$-quadratic twist of $e$ that is given by $e^{(d)}: y^2=x^3+ad^2x+bd^3$. let $e^{(d)}(bbb{q})$ be the group of $bbb{q}$-rational points of $e^{(d)}$. it is conjectured by j. silverman that there are infinitely many primes $p$ for which $...
In this paper, we give a new and direct proof for the recently proved conjecture raised in Soltani and Roozegar (2012). The conjecture can be proved in a few lines via the integral representation of the Gauss-hypergeometric function unlike the long proof in Roozegar and Soltani (2013).
this note introduces a new general conjecture correlating the dimensionality dt of an infinitelattice with n nodes to the asymptotic value of its wiener index w(n). in the limit of large nthe general asymptotic behavior w(n)≈ns is proposed, where the exponent s and dt are relatedby the conjectured formula s=2+1/dt allowing a new definition of dimensionality dw=(s-2)-1.being related to the topol...
For a finite group $G$, let $Cent(G)$ denote the set of centralizers of single elements of $G$. In this note we prove that if $|G|leq frac{3}{2}|Cent(G)|$ and $G$ is 2-nilpotent, then $Gcong S_3, D_{10}$ or $S_3times S_3$. This result gives a partial and positive answer to a conjecture raised by A. R. Ashrafi [On finite groups with a given number of centralizers, Algebra Collo...
There are a few finite groups that are determined up to isomorphism solely by their order, such as $mathbb{Z}_{2}$ or $mathbb{Z}_{15}$. Still other finite groups are determined by their order together with other data, such as the number of elements of each order, the structure of the prime graph, the number of order components, the number of Sylow $p$-subgroups for each prime $p$, etc. In this...
we investigate the classical h.~zassenhaus conjecture for integral group rings of alternating groups $a_9$ and $a_{10}$ of degree $9$ and $10$, respectively. as a consequence of our previous results we confirm the prime graph conjecture for integral group rings of $a_n$ for all $n leq 10$.
In this paper, we will study the arithmetic geometry of rank-2 attractors, which are Calabi-Yau threefolds whose Hodge structures admit interesting splits. We develop methods to analyze algebraic de Rham cohomologies and illustrate how our work by focusing on an example in a recent paper Candelas, la Ossa, Elmi van Straten. look at connections between attractors string theory Deligne's conjectu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید