نتایج جستجو برای: ژن glmm

تعداد نتایج: 16149  

Journal: :Journal of Computational and Graphical Statistics 2019

2016
J. T. Ormerod M. P. Wand

Variational approximation methods have become a mainstay of contemporary Machine Learning methodology, but currently have little presence in Statistics. We devise an effective variational approximation strategy for fitting generalized linear mixed models (GLMM) appropriate for grouped data. It involves Gaussian approximation to the distributions of random effects vectors, conditional on the res...

Journal: :Journal of bacteriology 1997
H De Reuse A Labigne D Mengin-Lecreulx

The function of UreC, the product of a 1,335-bp-long open reading frame upstream from the urease structural genes (ureAB) of Helicobacter pylori, was investigated. We present data showing that the ureC gene product is a phosphoglucosamine mutase. D. Mengin-Lecreulx and J. van Heijenoort (J. Biol. Chem. 271:32-39, 1996) observed that UreC is similar (43% identity) to the GlmM protein of Escheric...

2014
Anil Aktas Samur Nesil Coskunfirat Osman Saka

Longitudinal data with binary repeated responses are now widespread among clinical studies and standard statistical analysis methods have become inadequate in the answering of clinical hypotheses. Instead of such conventional approaches, statisticians have started proposing better techniques, such as the Generalized Estimating Equations (GEE) approach and Generalized Linear Mixed Models (GLMM) ...

Journal: :Journal of clinical microbiology 2011
Maria Guadalupe Córdova Espinoza Rosa González Vazquez Iyari Morales Mendez Consuelo Ruelas Vargas Silvia Giono Cerezo

A novel reverse primer (GLM MR1) was designed for detection of the glmM gene in Helicobacter pylori by PCR. The percentage of amplification in clinical isolates using GLM MR1 was 100% for detection of the glmM gene and 86.36% for the ureA gene. The primer designed is useful for the identification of H. pylori.

2018
Natalja Šebunova Jelena Štšepetova Toomas Sillakivi Reet Mändar

Helicobacter pylori (Hp) is one of the most important human pathogens that can cause duodenal and gastric ulcers, gastritis and stomach cancer. Hp infection is considered to be a cause of limiting access to bariatric surgery. The aim of this study was to determine the prevalence of Hp in patients with obesity going into bariatric surgery and to reveal the relationship between Hp and clinical da...

2017
Claudia Pedroza Van Thi Thanh Truong

BACKGROUND Analyses of multicenter studies often need to account for center clustering to ensure valid inference. For binary outcomes, it is particularly challenging to properly adjust for center when the number of centers or total sample size is small, or when there are few events per center. Our objective was to evaluate the performance of generalized estimating equation (GEE) log-binomial an...

ژورنال: پژوهنده 2010
، دکتر رضا مشایخی, , ، دکتر محمدرضا زالی, , ، فرشته جعفری, , دکتر همایون زجاجی, , دکتر کاوه بقایی, , مهدی بلفیون, , ، لیلا شکرزاده, ,

سابقه و هدف: هلیکوباکتر پیلوری از باکتری‌های مهم بیماریزا و یکی از عوامل ایجاد سرطان معده در دنیا محسوب می‌شود. بیماریزایی این باکتری را به طور عمده به جزایر پاتوژنیک موجود در ژن‌های این باکتری نسبت می‌دهند که شناخته شده‌ترین ژن‌ها در این جزایر، ژن‌های cagA و cagE می‌باشند. هدف این مطالعه، تعیین ارتباط این جزایر پاتوژنیک با علائم کلینیکی در میان بیماران ایرانی بوده است. مواد و روشها: شناسایی هل...

Journal: :CoRR 2017
Tales Imbiriba Ricardo Augusto Borsoi José Carlos M. Bermudez

Endmember variability is an important factor for accurately unveiling vital information relating the pure materials and their distribution in hyperspectral images. Recently, the extended linear mixing model (ELMM) has been proposed as a modification of the linear mixing model (LMM) to consider endmember variability effects resulting mainly from illumination changes. In this paper, we further ge...

1998
Dongchu Sun Paul Speckman Robert K. Tsutakawa

In this chapter, we examine the use of special forms of correlated random e ects in the generalized linear mixed model (GLMM) setting. A special feature of our GLMM is the inclusion of random residual e ects to account for lack of t due to extra variation, outliers and other unexplained sources of variation. For random e ects, we consider, in particular, the correlation structure and improper p...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید