نتایج جستجو برای: پایه q1
تعداد نتایج: 56493 فیلتر نتایج به سال:
KCNQ1 and KCNE1 (Q1 and E1) associate to form the slow delayed rectifier I(Ks) channels in the heart. A short stretch of eight amino acids at the extracellular end of S1 in Q1 (positions 140-147) harbors six arrhythmia-associated mutations. Some of these mutations affect the Q1 channel function only when coexpressed with E1, suggesting that this Q1 region may engage in the interaction with E1 c...
(1) For all subsets A, B of E2 T such that A meets B holds proj1 ◦A meets proj1◦B. (2) Let A, B be subsets of E2 T and s be a real number. If A misses B and A⊆HorizontalLine(s) and B⊆ HorizontalLine(s), then proj1◦A misses proj1◦B. (3) For every closed subset S of E2 T such that S is Bounded holds proj1 ◦ S is closed. (4) For every compact subset S of E2 T holds proj1 ◦ S is compact. (5) Let p,...
We consider a system of two coupled queues, Q1 and Q2. When both queues are backlogged, they are each served at unit rate. However, when one queue empties, the service rate at the other queue increases. Thus, the two queues are coupled through the mechanism for dynamically sharing surplus service capacity. We derive the asymptotic workload behavior at Q1 for various scenarios where at least one...
Given q1, q2 ∈ C \ {0}, we construct a unital Banach algebra Bq1,q2 which contains a universal normalized solution to the (q1, q2)-deformed Heisenberg–Lie commutation relations in the following specific sense: (i) Bq1,q2 contains elements b1, b2, and b3 which satisfy the (q1, q2)-deformed Heisenberg–Lie commutation relations (that is, b1b2 − q1b2b1 = b3, q2b1b3 − b3b1 = 0, and b2b3 − q2b3b2 = 0...
Let G be a graph with n vertices. We denote the largest signless Laplacian eigenvalue of G by q1(G) and Laplacian eigenvalues of G by μ1(G) > · · · > μn−1(G) > μn(G) = 0. It is a conjecture on Laplacian spread of graphs that μ1(G)−μn−1(G) 6 n − 1 or equivalently μ1(G) + μ1(G) 6 2n − 1. We prove the conjecture for bipartite graphs. Also we show that for any bipartite graph G, μ1(G)μ1(G) 6 n(n − ...
It is easy to see that there is at most one pair of polynomials (q(x), r(x)) satisfying (1); for if (q1(x), r1(x)) and (q2(x), r2(x)) both satisfy the relation with respect to the same polynomial u(x) and v(x), then q1(x)v(x)+r1(x) = q2(x)v(x)+r2(x), so (q1(x)− q2(x))v(x) = r2(x)−r1(x). Now if q1(x)− q2(x) is nonzero, we have deg((q1 − q2) · v) = deg(q1 − q2)+deg(v) ≥ deg(v) > deg(r2 − r1), a c...
گروه متناهی g را یک گروه گویا (q-گروه) نامند هرگاه تمام سرشتهای g دارای مقادیر گویا باشند. در این رساله به مطالعه این گروهها و موضوعات مرتبط با این گروهها خواهیم پرداخت. فصل اول رساله به بیان پیشنیازها اختصاص دارد. فصل دوم این رساله به مطالعه گروههای گویای 2-فروبنیوس اختصاص دارد. در این راستا نتایج جالبی به دست آمد. به ویژه نشان دادیم که مرتبه چنین گروههایی تنها توسط دو عدد اول 2 و 3 شمرده می ش...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید