نتایج جستجو برای: معادله برگرز هاکسلی
تعداد نتایج: 13053 فیلتر نتایج به سال:
در این پایان نامه یک روش عددی جدید مبتنی بر توابع هسته ی بازیافتی برای حل معادلات تحولی مانند معادله ی موج بلند منظم و معادله ی برگرز ارایه شده است .معادله موج بلند منظم نخستین بار توسط پرگراین به عنوان جای گزینی برای معادله ی kdv به منظور مطالعه ی امواج سولیتونی و مدل بندی موج های بلند روی سطح آب که دامنه ی کوچکی دارند، معرفی شد.معادله ی برگرز نیز نقش مهمی در مطالعه ی موج های غیر خطی دارد و به...
با تفکیک معادله ی تحولی و غیرخطی dp به معادله های برگرز و bbm و استفاده از روش های تفاضل های متناهی و روش های با خاصیت tvd به ترتیب در حل معادله های برگرز و bbm و حل هم زمان آن ها با روش تفکیک عملگر استرنگ، جواب های معادله ی dp به دست آورده می شود. در این پایان نامه، شبیه سازی جواب های سلیتونی، پیکونی، پاد پیکون، پیکون های شوک دار و موج حاصل از برخورد تعدادی از این نوع امواج، در معادله ی dp، در...
معادله برگرز یک معادله دیفرانسیل غیرخطی می باشد که حالت ساده شده ای از معادله ناویراستوکس است و برای بررسی خواص تلاطم مورد استفاده قرار می گیرد . اگر یک نیروی تصادفی با همبستگی معین و تابع توزیع گاوسی برای توضیح برخی خصوصیات سیستم به آن اضافی شود شکل معادله تغییر می کند. دراین حالت حدیv-o مورد بررسی قرار گرفته است . با گذشت زمان در معادله شوک پدیدار می شود. تکنیکی که برای حل عددی استفاده شد...
دراین پایان نامه بعضی از معادلات معروف را بااستفاده از روش زیرمعادله دیفرانسیل معمولی برنولی حل کرده ایم.معادلات دیفرانسیل بامشتقات جزئی غیرخطیرا با تغییرمتغیر مناسب به معادلات دیفرانسیل معمولی تبدیل نموده وپس از یکسری اعمال جبری مناسب،جواب های دقیق معادلات رابه طوریکه به جواب معادله برنولی وابسته شود،به دست می آوریم.
( این پایان نامه در نرم افزار فارسی تک نوشته شده است و فایلهای word آن موجود نیست و فایلهای فارسی تک آن در قسمت سایر فایلها موجود است ) در این پایان نامه برای حل عددی مسئله کنترل بهینه مرزی نسبت به دو معادله موج غیرخطی برگرز و kdv از رویکرد مستقیم بر مبنای روش پارامتری کردن بردار کنترل استفاده شده است. در این راستا برای حل مسئله کنترل بهینه مرزی نسبت به معادله برگرز از تکنیک بسط مدال استفاده ...
در این پایان نامه پس از بررسی روش های ضمنی جهت متناوب مبتنی بر روش هم مکانی طیفی چبیشف برای مسئله های سهموی خطی، به پیاده سازی این روش برای حل معادله غیرخطی برگرز دوبعدی پرداخته می شود.
در این پایان نامه سعی شده است حل عددی چند نوع از معادلات تحولی غیرخطی که دارای جواب سلیتونی می باشند به وسیله روش کوادراتور دیفرانسیل (dq) مورد مطالعه قرار گیرد. روش کوادراتور دیفرانسیل یک روش گسسته سازی عددی برای حل معادلات دیفرانسیل می باشد و اولین بار این روش توسط ریچارد بلمن و هم کارانش دراوایل سال 1970 معرفی گردید. این روش، همانند روش کوادراتور انتگرالی عمل می کند، یعنی مشت...
چکیده پایان نامه : در این پایان نامه، برای یافتن جواب های عددی معادله برگرز ut + uux - vuxx = 0, x € [a,b], t € [t0,t], دو الگوریتم اجزای محدود بی اسپلاین، که شامل یک روش هم محلی با بی اسپلاین مکعبی و یک روش گالرکین با بی اسپلاین مربعی است، ارائه می دهیم. در گسسته سازی زمان معادله، از بسط سری تیلور استفاده می کنیم. به منظور بررسی پایداری روش پیشنهاد شده، تحلیل پایداری فون- نیومن را به کار می ...
در این پایان نامه تاثیرات درهم تنیدگی کوانتومی در کانال وابسته به ولتاژ سدیم بررسی شده و به دنبال اعمال این تاثیرات معادله هاجکین-هاکسلی کلاسیک به شکل کوانتومی تصحیح می شود. حقیقتا معادله هاجکین-هاکسلی از سال 1952 تاکنون کارآمدترین معادله ای بوده است که در توضیح رفتار پالس های نورونی و رفتار شبکه نورون ها کارایی داشته است. اما انگیزه اصلی برای تصحیح این معادله کلاسیک تحقیقاتی بود که در سال 2006...
در این پایان نامه با بکار گیری روش بی-اسپلاین اجزای محدود، جواب تقریبی معادله را برای اعداد رینولدز بزرگ، بدست آورده ایم. ابتدا با استفاده از تبدیل هاف - کول، معادله غیر خطی برگر را به معادله خطی گرما تبدیل می کنیم و روش اجزای محدود با پایه های بی - اسپلاین مربعی را برای حل معادله بکار می بریم. سپس، با استفاده از روش بی - اسپلاین مربعی اجزای محدود و روش گسسته سازی زمان نیز، معادله برگر را به دس...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید