نتایج جستجو برای: معادله با مشتقات جزیی
تعداد نتایج: 670903 فیلتر نتایج به سال:
حساب کسری، در سالهای اخیر زمینه مطالعات بسیاری از ریاضیدانان قرار گرفته است. مشتق و انتگرال مرتبه کسری کاربردهای فراوانی در فیزیک و مکانیک، از جمله فیزیک پلاسما، مکانیک کوانتومی و دینامیک آشفتگی پیدا کرده اند. همچنین معادلات دیفرانسیل با مشتقات جزیی که شامل عملگرهای کسری باشند، کاربردهای زیادی در علوم مهندسی دارند. با این حال روشهای تحلیلی که برای حل این معادلات وجود دارند اغلب پیچیده و دشوار ه...
در این پایان نامه با استفاده از معادلات با مشتقات جزئی به بررسی مسائل کنترل بهینه و حساب تغییرات می پردازیم. از جمله این معادلات که ارتباط بین مسائل کنترل بهینه و حساب تغییرات را نشان می دهد، معادله هامیلتون - ژاکوبی می باشد. معادله هامیلتون - ژاکوبی در مسائلی مانند پردازش تصویر، مسائل بهینه سازی و پدیده هایی که یک منحنی یا یک سطح در طول زمان منتشر می شوند، مانند مدل کردن پیشروی آتش سوزی د...
در این پایان نامه به وسیله ی روش تفاضلات متناهی جواب معادلات با مشتقات جزیی، برای دو معادله ی کلاین-گوردن و کلاین-گوردن-زاخاروف تقریب زده می شود، که در آن معادله ی کلاین-گوردن یک معادله موج یک بعدی خطی روی دامنه ی بیکران و معادله ی کلاین-گوردن-زاخاروف یک معادله موج یک بعدی غیرخطی روی دامنه ی کراندار می باشند. برای حل معادله ی کلاین-گوردن روی دامنه ی بیکران دو شرط مرزی مصنوعی به منظور تبدیل مسئل...
روش تفاضلات متناهی یکی از روشهای حل عددی معادلات دیفرانسیل با مشتقات جزئی می باشد. در روش تفاضلات متناهی مشتقات ظاهر شده در معادله توسط یک سری تقریبات جایگزین می گردد و سپس سعی می گردد معادله دیفرانسیل مورد بحث بصورت گسسته و در یک مجموعه از نقاط بخصوصی مورد بررسی و حل قرار گیرد که به این نقاط، نقاط شبکه گفته می شود. در روشهای معمول تفاضلات متناهی، نقاط شبکه از قبل مشخص و به صورت ثابت در طول زما...
در این پایان نامه، یک روش مستقیم برای حل معادلات دیفرانسیل جزیی با شرایط اولیه و مرزی با استفاده از موجک های لژاندر ارائه شده است. ماتریس های عملیاتی انتگرال معرفی شده و برای تبدیل کردن معادله دیفرانسیل جزیی که در شرایط اولیه و مرزی صدق می کند به حل معادلات جبری به کار گرفته می شود. در پایان این روش برای بعضی مثال ها امتحان می شود و نتایج عددی حاصل از این روش ارائه می شود.
در این رساله، ابتدا به معرفی و نحوه ی شکل گیری توابع متعامد گویا (لژاندر و چبیشف) پرداخته شده، سپس از آن ها در تقریب توابع روی بازه های نامتناهی استفاده شده است. در ادامه چندجمله ای های متعامد انتقال یافته به هر بازه ی دلخواه $[0,b]$ و چندجمله ای های تقریباً متعامد معرفی شده اند. از توابع گویا و چندجمله ای های متعامد انتقال یافته در تقریب جواب های انواع معادلات دیفرانسیل (معادلات دیفرانسیل معم...
روش تبدیل دیفرانسیل روشی تحلیلی- عددی برای حل معادلات با مشتقات جزئی است. این روش اولین بار توسط ژو در سال 1986 برای کاربردهای مهندسی معرفی گردید و از آن برای حل مسائل مقدار اولیه خطی و غیرخطی در تحلیل مدارهای الکتریکی استفاده کرد. روش تبدیل دیفرانسیل از بسط سری تیلور برای جواب معادلات دیفرانسیل به صورت یک چندجمله ای استفاده می کند. در روش سری تیلور برای محاسبه ضرایب سری، باید مشتقات...
در این پایان نامه از یک روش بدون شبکه تحت عنوان روش جواب اساسی برای حل معادلات دیفرانسیل بیضوی استفاده می شود. این روش به طور مستقیم برای حل معادلات همگن دو و سه بعدی مورد استفاده قرار می گیرد. برای حل معادلات پواسون ترکیبی از این روش و روش جواب خصوصی به کار گرفته می شود. با داشتن یک جواب خصوصی که لزوماً در شرایط مرزی صدق نمی کند می توان معادله را به یک معادله همگن با شرایط مرزی تغییر یافته تبد...
در این پایان نامه روش آشفتگی هوموتوپی را برای حل معادلات با مشتقات جزئی مورد استفاده قرار می گیرد و نتایح به دست آمده از این روش با برخی روش های عددی مانند روش مشخصه و روش تفاضلات متناهی صریح مقایسه می شود. این مقایسه برتری روش آشفتگی هوموتوپی نسبت به سایر روش های عددی را نشان می دهد.
امروزه در مبحث محاسبات رآکتورهای هستهای مثل فرسایش و مدیریت سوخت، تحلیل گذرا بازسازی توان میلههای به دنبال روشهایی جهت استفاده کدهای هستند که علاوه بر دقت قابلقبول از هزینه زمان بهینهای برخوردار باشند. این پژوهش با گسستهسازی معادله پخش نوترون روش نودال بسط شار جریان متوسط مرتبه بالا نشان داده میشود روش بهینه قابلقبولی بهره میبرد. مستقیم الحاقی نوترون، برای هندسه مربعی دوبعدی دو گروه ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید