نتایج جستجو برای: معادلات برگرز
تعداد نتایج: 25245 فیلتر نتایج به سال:
معادله برگرز شکل ساده شده ای از معادلات ناویر-استوکس می باشد که ویژگی های غیرخطی معادلات ناویر-استوکس را به خوبی نشان می دهد. در مطالعه حاضر معادله برگرز با شرایط اولیه متفاوت به روش عددی آدومیان (adm) و روش المان محدود ناپیوسته موضعی گالرکین (ldgfem) حل و نتایج حاصل با نتایج حاصل از روش تحلیلی مقایسه می گردد. روش (adm) یک کلاس گسترده ای از معادلات خطی و غیرخطی دیفرانسیل معمولی، معادلات دیفرانس...
در این رساله، پس از پرداختن به مقدماتی از آنالیز حقیقی و آنالیز موجک و معرفی دو معادله برگرز و ساین-گوردن به معرفی روش موجک هار می پردازیم. سپس روش موجک هار را برای حل دو معادله برگرز و ساین-گوردن به کار می بریم. در پایان نیز برتری این روش را نسبت به روش های دیگر نشان می دهیم. این رساله شامل سه فصل بوده و هدف از آن معرفی روش موجک هار و بررسی کارایی این روش در حل عددی معادلات تکاملی می باشد.
معادله برگرز یک معادله دیفرانسیل غیرخطی می باشد که حالت ساده شده ای از معادله ناویراستوکس است و برای بررسی خواص تلاطم مورد استفاده قرار می گیرد . اگر یک نیروی تصادفی با همبستگی معین و تابع توزیع گاوسی برای توضیح برخی خصوصیات سیستم به آن اضافی شود شکل معادله تغییر می کند. دراین حالت حدیv-o مورد بررسی قرار گرفته است . با گذشت زمان در معادله شوک پدیدار می شود. تکنیکی که برای حل عددی استفاده شد...
مطالعه فیزیکی معادلات آب کم عمق یکی از مسائل مطرح در دینامیک شاره های ژئوفیزیکی است. در این کار به بررسی عملکرد روش فشرده ترکیبی مرتبه ششم برای حل عددی معادلات آب کم عمق یک بُعدی پرداخته می شود. برای مقایسه حل عددی با سایر روش های تفاضل متناهی، معادلات آب کم عمق یک بعدی به سه روش حل شده و نتایج حاصل برای یک آزمون موردی مقایسه می شود. در این حل عددی، برای انتگرال گیری بخش زمانی معادلات از روش رون...
در این رساله به حل معادلات دیفرانسیل جزئی خطی و غیر خطی با استفاده از توابع پایه ای شعاعی می پردازیم. در فصل دوم به حل معادله برگرز با استفاده از روش سازگار می پردازیم. این روش قادر به حل معادلات دیفرانسیل جزئی خطی و غیر خطی می باشد. در فصل سوم به حل معادلات دو بار همساز خطی و غیر خطی با استفاده از توابع پایه ای شعاعی خواهیم پرداخت. همچنین یک روش بدون شبکه بندی هم مکانی مستقیم برای حل معادلات د...
بسیاری از پدیده های طبیعی توسط یک سیستم معادلات دیفرانسیل غیر خطی با مشتقات جزئی قابل توصیف هستند که حل تحلیلی آنها سخت و یا غیرممکن است و دلیل این موضوع نبود یک تئوری کلی برای حل کامل این نوع معادلات می باشد. یکی از تکنیک های موثر برای یافتن جواب های دقیق سیستم های دینامیکی ای که با دستگاه معادلات دیفرانسیل غیرخطی با مشتقات جزئی توصیف شده اند روش تقارن است. از یک سو، می توان با کاهش تقارن معاد...
چون از یک طرف بسیاری از پدیده های فیزیکی به صورت معادلات تحولی غیرخطی مدل می شوند و از طرف دیگر روش تفاضل متناهی فشرده دارای ویژگیهای شاخص پایداری، کارایی و همگرایی مرتبه بالا است، در این پایان نامه قصد داریم به بررسی حل عددی برخی معادلات تحولی غیرخطی به کمک روش تفاضل متناهی فشرده بپردازیم. این پایان نامه را میتوان به دو بخش تقسیم کرد: 1) در بخش اول معادله تحولی را تعریف کرده و مقدمه ای بر پید...
در این پایان نامه یک روش عددی جدیدی به نام روش کوادراتور دیفرانسیلی بی-اسپلاین مکعبی تصحیح شده پیشنهاد داده می شود تا جواب های تقریبی از معادله برگر را پیدا کنیم. توابع پایه ای بی- اسپلاین های تصحیح شده در کوادراتور دیفرانسیلی استفاده می شوند تا ضرایب وزنی را تعیین کنیم. این روش در شکل رانگ کوتا مرتبه سه و فاصله ی زمانی با پایداری بالا در چهار مرحله ی بهینه استفاده می شود تا دستگاه معاد...
روش بدون شبکه حداقل مربعات گسسته کارایی مناسب خود را برای حل معادلات دیفرانسیلی مشتقات جزیی حاکم بر مسائل مهندسی نشان دادهاست. این روش بر پایه کمینه کردن تابعک حداقل مربعاتی استوار است. تابعک حداقل مربعاتی به صورت مجموع وزنداری از باقیماندهی معادله دیفرانسیلی و شرایط مرزی حاکم تعریف شدهاست. معمولا از تابع تخمین حداقل مربعات متحرک (MLS)، برای ساختن توابع شکل در روش بدون شبکه حداقل مربعات گسس...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید