نتایج جستجو برای: مسائل مقدار مرزی مرتبه شش
تعداد نتایج: 129381 فیلتر نتایج به سال:
در این پایان نامه ایتدادر فصل اول مفاهیم پایه ای مورد نیاز را بررسی می کنیم و در فصل دوم مقدار ویژه اصلی را برای معادله عملگر بررسی می کنیم و نشان می دهیم که مقدار ویژه در هر دامنه کراندار ساده می باشد، سپس در فصل سوم وجود جوابهای نامتناهی برای معادله بیضوی با شرایط غیر خطی مقعر که در یک دامنه کراندار مشخص کردیم بیان می کنیم و شرایطی در معادله می باشد که با معرفی تابع وزن و غیر خطی در نظر می گی...
یکی از روشهای علمی حل مسائل فیزیک و مهندسی و تجزیه و تحلیل پدیده های طبیعی، ساخت و ارائه مدل ریاضی برای این مسائل و پدیده هاست. مدل ریاضی برای مسائل فیزیک و مهندسی در واقع، بیان واقعیتهای حاکم بر مسئله فیزیک و مهندسی در قالب روابط ریاضی، به خصوص بیان علایق و روابط میان مجهول و داده های مسئله با روابط و معادلات ریاضی است. غالباً مدل ریاضی مسائل فیزیک و مهندسی به صورت مسائل مقدار اولیه و مسائل مقد...
در این پایان نامه، اسپلاین پارامتری درجه سه تحت فشار را برای به دست آوردن تقریبی برای جواب سیستمی از مسأله ی مقدار مرزی مرتبه دو که از مطالعه ی مسائل مختلفی از شاخه های متعدد علوم محض و کاربردی به وجود می آیند، به کار می بریم. به علاوه، تقریب عددی بر اساس اسپلاین پارامتری درجه پنج را برای حل سیستمی از مسأله ی مقدار مرزی مرتبه ی چهار، به دست می آوریم. همچنین برای نشان دادن کارایی این روش ها، از ...
در این پایان نامه سعی بر آن است تا کاربرد نوع خاصی از منحنی ها موسوم به منحنی بزیه در حل عددی معادلات دیفرانسیل بررسی شود. در فصل اول مفاهیم و موضوعاتی که در فصل های دوم و سوم استفاده خواهد شد، به طور کاملاً مختصر مورد بخث قرار گرفته اند. در فصل دوم، منحنی های مذکور را با جزئیات کامل معرفی نموده و در نهایت در فصل سوم، چگونگی بکارگیری این منحنی ها، برای حل معادلات دیفرانسیل ارائه شده است.
روش نقاط مرزی بدون شبکه گالرکین براساس فرمول بندی ضعیف می باشد . فرضیات مسئله در این روش معادلات دیفرانسیل با شرائط مرزی مخلوط می باشد.در این روش ابتدا با استفاده از قضیه گرین و با استفاده از شرائط مرزی داده شده معادله دیفرانسیل با مشتقات حزئی به یک معادله انتگرال مرزی تبدیل می شود.در مرحله بعد با استفاده از روش کلاسیک گالرکین مسئله به مسئله معادل تبدیل کرده و در نهایت با استفاده از روش تقریب ک...
روش بدون المان کالوکیشن برای حل مسائل مقدار مرزی خطی مورد استفاده قرار میگیرد. این روش با روشهای بدون المان شکل ضعیف مانند روش گالرکین متفاوت است و احتیاجی به شبکهبندی سلولی و انتگرالگیری عددی ندارد. لذا محدودیتهای انتگرالگیری عددی مانند زمانبر بودن حل و دقت حل را ندارد و معادلات جدا شده میتوانند مستقیماً از شکل قوی معادلات دیفرانسیل پاره ای حاکم بر مسئله تعیین شوند. اما مشکل اساسی این روش...
در این پایان نامه اسپلاین غیر چندجمله ای برای حل عددی سیستم مسایل مقدار مرزی مورد مطالعه قرار گرفته اند.حل عددی سیستم مسایل مقدار مرزی مرتبه سوم با استفاده از اسپلاین غیرچندجمله ای درجه چهار مورد بحث و بررسی قرار گرفته است. همچنین اسپلاین غیر چند جمله ای درجه پنج را برای حل سیستمی از مساله مقدار مرزی مرتبه چاهرم استفاده کرده ایم.
در این رساله ما چندگانگی جواب ها را با استفاده از روش های تغییراتی و نظریه نقطه بحرانی را برای ردهای از معادلات دیفرانسیل ضربه ای مطالعه می کنیم.
در این پایان نامه، یک الگوریتم عددی موثر برای حل یک کلاس عمومی از مسائل مقدار مرزی منفرد غیرخطی مورد بررسی قرار می گیرد. این الگوریتم،بر اساس روش تجزیه آدومین و تابع گرین می باشد. در مقایسه با روش های بازگشتی موجود بر اساس آدومین این الگوریتم عددی، از حل یک دنباله ای از معادلات متعالی برای ضرایب نامعین جلوگیری می کند.
در این پایان نامه به حل عددی مسائل مقدار مرزی مرتبه ششم و هشتم با استفاده از روش هسته باز پرداخته می شود. در این پایان نامه بر مبنای فضاهای هسته باز تولید و ، به حل دو مسئله مقدار مرزی خطی و غیرخطی به ترتیب از مرتبه هشتم و ششم پرداخته شده است. در این روش، با استفاده از روش متعامد سازی گرام اشمیت، پس از محاسبه هسته، جواب تحلیلی مساله به صورت یک سری نامتناهی با مولفه های قابل محاسبه بیان می شوند.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید