نتایج جستجو برای: فضای f
تعداد نتایج: 331476 فیلتر نتایج به سال:
چکیده: یک عنصر f از حلقه ی تعویض پذیر و یکدار a را یک عنصر وان نیومن منظم گویند، اگر عنصر g از حلقه ی a موجود باشد به طوری که f^2 g=f. c(x) یک حلقه ی وان نیومن منظم است، اگر و تنها اگر، هر عنصر آن وان نیومن منظم باشد. c(x) یک حلقه وان نیومن منظم است، هرگاه x یک p- فضا باشد. اگر همه نقاط فضای x به جز حداکثر یکی از آن ها p - نقطه باشد، فضای x را یک p - فضای اساسی محض می نامند. در این رساله نشان م...
در این پایان نامه فضاهای تقریباً فشرده حقیقی را معرفی می کنیم? که مهمترین ابزار برای بررسی فضاهای تقریباً فشرده حقیقی مجموعه های پایدار هستند. از قبل می دانیم که نگاشت های ابر حقیقی خاصیت فشرده حقیقی را حفظ می کنند. اکنون نشان می دهیم این نگاشت ها خاصیت تقریباً فشرده حقیقی را نیز حفظ می کنند. همچنین مفهوم نگاشت های ?-کامل و فضاهای f-نرمال را به روشی که ریبرن در سال ???? از مطالعه نگاشت های ?-کامل...
فرض کنیم[0،1) ? ? و e یک فضای باناخ و (x, d) یک فضای متریک موضعا فشرده باشد وlip0(x، e) فضای توابع لیپ شیتس کوچک e- باناخ مقدار تعریف شده بر فضای متریک هولدر موضعا فشرده( x , d^? )باشد که در بی نهایت صفر می شوند. در این پایان نامه نشان می دهیم، هر دوسویی خطی دوجداساز t:lip0(x,e) ? lip0(y,f)یک عملگر ترکیبی وزن دار به صورت t(f(y))=h(y)(f(p(y))), (f ?lip0(x,e), y ? y) است که در آن به ازای هر...
فرض کنیم x یک فضای فشرده ی هاوسدورف و a یک جبر یکنواخت طبیعی بر x باشد. فرض کنی?_a (f)م طیف f?a باشد. یکی از اهداف ما تعمیم قضیه ی مولنار به صورت زیر است: فرض کنیم ?:a?a نگاشتی پویا باشد که در شرط زیر صدق کند: ?(fg)=?(?(f)?(g) ) (?f,g?a) در این صورت یک همسانریختی a:x?x وجود دارد به طوری که ?(f)(?(x) )=(?(1_x ) )(x)f(x) (? f?a,? x?x) هدف دیگر ما تعمیم قضیهی مولنار و تعمیم قضیه ی رائو و روی ...
تعریف: فضای توپولوژی x، یک فضای k تفکیک پذیر نامیده می شود، اگر به ازای هر دو نقطه متمایز a و b از آن، بتوانیم یک تابع c(x,k) f بیابیم که f(a)=1 و f(b)=0. تعریف: فضای توپولوژی x با خاصیت t1 را، k- منظم می نامیم هرگاه به ازای هر x a و هر زیر مجموعه بسته که بتوانیم یک تابع c(x,k) f بیابیم که f(a)=1 و f(x)=0 و b در x . ابتدا توجه می کنیم که فضاهای k- منظم غیر یکسان ریخت x و y موجودند که (x,k)c و...
فرض کنی h یک فضای هیلبرت متشکل از توابع اسکالر مقدار روی یک مجموعه ی $x$ باشد. اگر برای هر x in xتابعک خطی delta_{x}:hlongrightarrow f}$ با تعریف delta_{x}(f)=f(x) برای هر fدرh یک تابعک خطی پیوسته روی فضای هیلبرت mathcal{h} باشد، آنگاه h یک فضای هیلبرت هستهِ ی بازتولید می نامند.ایده ی هسته ی بازتولید برای اولین بار در سال 1907 توسط gi{h5} روی مسائل مقدار مرزی برای توابع هارمونیک و غیرهارمونیک ...
فرض کنید g گروهی با خاصیت موضعا فشرده باشد، بطوریکه همزمان یک فضای موضعا فشرده هاسدروف است که عملگرهای گروهی آن پیوسته باشند. همچنین فرض کنید که یک تابع وزنی تعریف شده بر گروه g باشد (این تعریف در شماره 2.1.11 ذکر شده است ). هدف ما آن است که تمام عملگرهای خطی و کراندار t را مشخص کنیم بطوریکه t: l1( )--->b باشد و در شرط t (f*g) f*t(g) صدق کند، جائیکه b یک فضای باناخ شامل رادون میجرهای تعریف شده ...
در این پایان نامه، پایداری هایرز - اولام - راسیاس معادله تابعی مکعبی f(mx + y) + f(mx -y) = mf(x+y) + mf(x-y) + m f(x-y) + 2(m3-m)f(x) را جاییکه m?1 عدد صح?ح مثبت است را بدست می آور?م همچنین با استفاده از روش نقطه ثابت پایداری هایرز - اولام - راسیاس را برای معادله تابعی f(2x+y) = 2f(x) + f(y) + f(x+y) - f(x-y) در فضای باناخ اثبات خواهیم کرد
?? هدف اصلی در این پایان نامه پرداختن به پایداری هایرز-اولام-راسیاس معادلات ترکیبی شرطی روی فضای باناخ ناارشمیدسی و ضربگرهای متعامد روی جبر باناخ ناارشمیدسی است. همچنین حل وپایداری معادله شبه فیبوناچی(4-f(x) = f(x??)+f(x روی فضای باناخ ناارمیدسی را اثبات می کنیم.سازماندهی این پایان نامه به صورت زیر می باشد ?? فصل اول تعاریف مفاهیم و قضایای اولیه پایداری معادلات تابعی که در فصل های بعدنقش به ...
چکیده: در این پایان نامه بعد از تعاریف و مفاهیم مقدماتی، به توصیف مختصری از فضای هیلبرت هاردی پرداختیم. سپس بر اساس آن فضای h^2 را تعریف کردیم در واقع اگر u گوی واحد باز و " " ?u مرز" " u باشد، در آن صورت فضای هاردی h^2 عبارت است از فضای همه توابع تحلیلی f که ?f??sup?(0<r<1)?(???u??|f(r?) |^2 dm(?)? )^(1/2)<+? جایی که m اندازه ی لبگ نرمال شده می باشد. حال اگر ? یک خودنگاشت تحلیلی از u باشد ب...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید