نتایج جستجو برای: فضای فشرده
تعداد نتایج: 29218 فیلتر نتایج به سال:
دیدونه در سال 1944 میلادی برای اولین بار فضاهای هاسدورفی، که هر پوشش بازشان دارای یک تظریف باز موضعاً متناهی بود را فضاهای پیرافشرده نامید. ما در این رساله ضمن تعریف مفهوم پیرافشردگی، به بررسی برخی از معادل ها، میزان ارثی بودن، حاصل جمع، حاصل ضرب دکارتی، جایگاه و توابعی که این خاصیت را حفظ می کنند می پردازیم. گردایه وار نرمال و گردایه وار هاسدورف به ترتیب دومین و سومین خواصی هستند که به معرفی...
حلقه ی توابع حقیقی مقدار پیوسته از یک فضای تیخونوف، c (x) ابزاری بسیار کارآمد برای توسعه ی همزمان و ایجاد ارتباط در دو شاخه ی جبر و توپولوژی است. در بسیاری ازموارد این حلقه به کمک مباحث پیچیده ی ریاضی که برای آن ها مثال های عینی ، کمیاب و یا نایاب است، می شتابد و بیان این مباحث را آسان می نماید. همچنین c (x)، به عنوان پلی قدرتمند ویژگی های جبری خود را با ویژگی های توپولوژیک فضای x ، مرتبط می سا...
فرض کنیم a یک – جبر باناخ و a دوگان دوم a مجهز به ضرب آرنز اول باشد. در این پایان نامه به بررسی وجود برگشت روی a حاصل از توسیع برگشت روی a می پردازیم خصوصا دوگان دوم جبرهای گروهی وابسته به گروه موضعا فشرده ی g مانند luc(g), l1(g) و wap(g) را مورد مطالعه قرار می دهیم.همچنین یک مشخصه سازی از برگشت دلخواه روی جبر گروهی l1(g ) و جبر اندازه ی(g) m وابسته به g را ارایه می دهیم و شرط برابری این برگشت ...
در حلقه ی توابع پیوسته ی حقیقی مقدار روی فضای توپولوژی x، هر ایدآل اول مشمول در یک ایدآل ماکسیمال منحصر به فرد است. اگر x فشرده باشد، آن گاه هر ایدآل ماکسیمال به شکل mp برای یک p ? x و شامل همه ی عناصر f ? c(x) است به طوری که f(p) = ? و اشتراک همه ی ایدآل های اول مینیمال در mp مجموعه ی همه ی توابع پیوسته ای است که در یک همسایگی نقطه ی p صفر می شوند. در این پایان نامه عکس بعضی از جزئیات را بررسی...
می دانیم که حلقه ی توابع پیوسته ی حقیقی مقدار روی یک فضای تیخونوف x با( c(x نشان داده می شود. همچنین این گزاره شناخته شده است که هرگاه x وy دو فضای فشرده حقیقی بوده به طوری که (c(x و (c(y یکریخت باشند، آن گاه x و y همسان ریخت خواهند بود؛ یعنی، (c(x فضای x را معین می کند. محدودیت به فضاهای فشرده حقیقی از این حقیقت که (c(x و( c(vx یکریخت می باشند، ناشی می شود که فضای vx فشرده شده ی حقیقی هویت x...
در سال 2007 ابطحی نصر اصفهانی و رجالی ثابت کردند اگر g یک گروه توپولوژیک موضعاً فشرده و نافشرده باشد و p < 2 >1آنگاه برای هر همسایگی فشرده k از عضو همانی g توابع f,g موجودند که f*g روی k بینهایت میشود به بیان دیگر f*g به عنوان یک تابع روی g موجود نیست.
در این پایان نامه به معرفی و مطالعه خانواده ای ناانبساطی از عملگرهای غیر خطی یک پارامتری موسوم به خانواده های کسینوسی قویا پیوسته می پردازیم. هدف اصلی ما در این جا تقریب نقطه ثابت مشترک خانواده های کسینوسی ناانبساطی در فضاهای هیلبرت حقیقی است. ما با به کارگیری تصویر متریک بر آلگوریتم مان دنباله ای می سازیم که به طور قوی به نقطه ثابت مشترک خانواده کسینوسی ناانبساطی مورد نظر همگراست.
یک فضای هاسدورف ، تقریبا گسسته نامیده می شود هرگاه دقیقا یک نقطه نامنفرد داشته باشد. یک فضای تیخانف -sv, y فضا نامیده می شود، هرگاه c(y)/p برای هر ایدآل اول p از c(y)، ارزیابی باشد. ثابت می شود که فضای تقریبا گسسته x که بصورت d { } می باشد، -sv فضاست اگر و تنها اگر x به صورت اجتماع متناهی از زیر فضاهای ناهمبند پایه ای بسته باشد اگر و فقط اگر m{f c(x): f()0}شامل تعداد متناهی ایدآل های اول مینیما...
در این رساله نویسنده می کوشد که هر فضای فشرده ابرلین یکنواخت برقرار کند و همچنین نشان دهد که هر فضای فشرده ابرلین می تواند به صورت یک مجموعه آزاد مولد برای یک مجموعه نشانده شود . این نتیجه بوسیله حالتهای ویژه ای از خواص فضاهای باناخ جفت بدست می آید.
چکیده ندارد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید