نتایج جستجو برای: فرآیند tennessee eastman

تعداد نتایج: 37487  

2013
Hossam Faris Alaa F. Sheta

The Tennessee Eastman chemical process is a well-defined simulation of a chemical process that has been commonly used in process control research. As chemical process plants are getting more complex, the pressure on chemical engineers to develop accurate models for monitoring and control purposes is increased. In this paper, we explore the idea of using Genetic Programming (GP) technique to mod...

Ali Mohammad Sahlodin Mahmoud Reza Pishvaie, Masoud Golshan, Ramin Bozorgmehry Boozarjomehry

A Real-Time Optimization (RTO) strategy incorporating the fuzzy sets theory is developed, where the problem constraints obtained from process considerations are treated in fuzzy environment. Furthermore, the objective function is penalized by a fuzzified form of the key process constraints. To enable using conventional optimization techniques, the resulting fuzzy optimization problem is the...

Journal: :the modares journal of electrical engineering 2005
elham tavasolipour mohammad taghi hamidi beheshti amin ramezani

in this paper a novel process monitoring scheme for reducing the type і and type іі error rates in the monitoring phase is proposed. first, the proposed approach uses an augmented data matrix to implement the process dynamic. then, we apply independent component analysis (ica) transformation to the augmented data matrix, and eliminate the outliers using the local outlier factor (lof) algorithm....

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده مهندسی شیمی و نفت 1391

برای اطمینان از درستی کارکرد فرآیند های صنعتی، نیاز به ابزارهایی هست که وضعیت های نامطلوب عملکرد فرآیند را با دقت و سرعت بالا به راهبر فرآیند نشان دهد. یک روش موثر برای تشخیص و ردیابی عیوب، به کاهش اثر این عیوب، تأمین ایمنی عملیات، کم کردن عدم زمان کارکرد و کاهش هزینه های بازسازی کمک می کند. در حال حاضرbayesian belief networks (bbns) از جمله روش های مورد توجه جهت تعیین و تشخیص عیوب فرآیندها به ...

Journal: :Processes 2022

A hierarchical structure based on a Deep LSTM Supervised Autoencoder Neural Network (Deep LSTM-SAE NN) is presented for the detection and classification of faults in industrial plants. The proposed methodology has ability to classify incipient that are difficult detect diagnose with traditional many recent methods. Faults grouped into different subsets according degree difficulty them accuratel...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید