نتایج جستجو برای: روش arfima

تعداد نتایج: 369809  

2014
Maarten L. Wijnants

In a recent publication Stadnitski (2012) presented an overview of methods to estimate fractal scaling in time series, outlined as an accessible tutorial1. The publication was set-up as a comparison between monofractal and ARFIMA methods, and promotes ARFIMA to distinguish between spurious and genuine 1/f noise, shedding light on “the problem that the log–log power spectrum of short-memory ARMA...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان تهران - دانشکده علوم پایه 1393

روش¬های پیش بینی سری های زمانی مالی براساس مدل¬های اتورگرسیو میانگین متحرک انباشته (arima) و واریانس ناهمسان شرطی اتورگرسیو (arch) ویژگی حافظه بلند¬مدت و وجود شکست¬های ساختاری را در مدل¬سازی در نظر نمی¬گیرند. جهت رفع مشکل حافظه بلند¬مدت از فرآیندهایی نظیر مدل اتورگرسیو میانگین متحرک انباشته کسری (arfima) و مدل واریانس ناهمسان شرطی اتورگرسیو تعمیم یافته انباشته کسری (figarch) استفاده می¬شود. ولی...

Journal: :Revista de la Facultad de Ciencias 2016

Journal: :Statistics in Transition New Series 2021

Abstract The Standard Generalised Autoregressive Conditionally Heteroskedastic (sGARCH) model and the Functional (fGARCH) were applied to study volatility of Fractionally Integrated Moving Average (ARFIMA) model, which is primary objective this study. other goal paper expand on researchers’ previous work by examining long memory volatilities simultaneously, using ARFIMA-sGARCH hybrid comparing ...

ژورنال: :دانش سرمایه گذاری 0
حبیب اله سالارزهی عضو هیئت علمی دانشگاه تهران منصور کاشی دانش آموخته ی کارشناسی ارشد مدیریت بازرگانی- مالی دانشگاه سیستان و بلوچستان (مسئول مکاتبات) سیدحسن حسینی دانش آموخته ی کارشناسی ارشد مدیریت بازرگانی- مالی دانشگاه سیستان و بلوچستان محمد دنیایی کارشناس ارشد رشته مدیریت بازرگانی- مالی، عضو باشگاه پژوهشگران جوان، دانشگاه آزاد اسلامی واحد زاهدان

این مقاله به بررسی عملکرد پیش بینی مدل های arima و arfima با استفاده از داده های روزانه بازده شاخص کل سهام تهران در بازه زمانی 04/09/1380 تا 09/09/1390 می پردازد. در این راستا جهت تخمین پارامتر d و دیگر پارامترها، از روشnls  در بسته نرم افزار oxmetric/pcgive  استفاده شد و پس از مقایسه نتایج مدل­های تحقیق؛ مدل arfima بر اساس معیار aic مدلی برتر در مدل سازی tepix مشخص گردید. همچنین از میان براورد...

2003
Christopher F Baum

2 1 1 =0 | | d t t t p p q q d d k k t () () ()(1) () = () (0) () () (1) (1) = () ())(+ 1) () () 0 5 1. Fractionally integrated timeseries and ARFIMA modelling 1 This presentation of ARFIMA modelling draws heavily from Baum and Wiggins (2000). The model of an autoregressive fractionally integrated moving average process of a timeseries of order , denoted by ARFIMA , with mean , may be written u...

2001
John W. Galbraith Victoria Zinde-Walsh

Ce document est publié dans l'intention de rendre accessibles les résultats préliminaires de la recherche effectuée au CIRANO, afin de susciter des échanges et des suggestions. Les idées et les opinions émises sont sous l'unique responsabilité des auteurs, et ne représentent pas nécessairement les positions du CIRANO ou de ses partenaires. This paper presents preliminary research carried out at...

2011
L. K. Ibrahim B. K. Asare

Autoregressive fractional integrated moving average modeling strategy was used to model the daily average temperature (DAT) series of Sokoto metropolis for the period of 01/01/2003 to 03/04/2007. The time plot suggests that there is persistence dependence in the series. The order of fractional integration was found to be 0.6238841. The correct model for the daily average temperature data (DAT) ...

2007
Shin-Huei Wang Cheng Hsiao

This paper proposes an easy test for independence between two stationary autoregressive fractionally integrated moving average (ARFIMA) processes via AR approximations. We prove that an ARFIMA (p, d, q) process, φ(L)(1 − L)yt = θ(L)et, d ∈ (0, 0.5), where et is a white noise, can be approximated well by an autoregressive (AR) model and establish the theoretical foundation of Haugh’s (1976) stat...

ژورنال: تحقیقات اقتصادی 2010

در این مقاله با استفاده از داده‎های روزانة شاخص کل بورس اوراق بهادار تهران در دورة زمانی 6/1/1382 تا 14/4/1386، به بررسی ویژگی حافظة بلند این شاخص پرداخته و مدل ARFIMA را بر آن برازش می‎دهیم. هم‎چنین عملکرد پیش‎بینی مدل ARFIMA را با مدل ARIMA مقایسه می‎کنیم. نتایج نشان می‎دهند که اولاٌ این سری زمانی از نوع حافظة بلند است، بنابراین می‎توان با تفاضل‎گیری کسری آن را مانا کرد. پارامتر تفاضل‎گیری ب...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید